Abstract. Here we examine the landscape of New Zealand's Marlborough Fault System (MFS), where the Australian and Pacific plates obliquely collide, in order to study landscape evolution and the controls on fluvial patterns at a long-lived plate boundary. We present maps of drainage anomalies and channel steepness, as well as an analysis of the plan-view orientations of rivers and faults, and we find abundant evidence of structurally controlled drainage that we relate to a history of drainage capture and rearrangement in response to mountain-building and strike-slip faulting. Despite clear evidence of recent rearrangement of the western MFS drainage network, rivers in this region still flow parallel to older faults, rather than along orthogonal traces of younger, active strike-slip faults. Such drainage patterns emphasize the importance of river entrenchment, showing that once rivers establish themselves along a structural grain, their capture or avulsion becomes difficult, even when exposed to new weakening and tectonic strain. Continued flow along older faults may also indicate that the younger faults have not yet generated a fault damage zone with the material weakening needed to focus erosion and reorient rivers. Channel steepness is highest in the eastern MFS, in a zone centered on the Kaikōura ranges, including within the low-elevation valleys of main stem rivers and at tributaries near the coast. This pattern is consistent with an increase in rock uplift rate toward a subduction front that is locked on its southern end. Based on these results and a wealth of previous geologic studies, we propose two broad stages of landscape evolution over the last 25 million years of orogenesis. In the eastern MFS, Miocene folding above blind thrust faults generated prominent mountain peaks and formed major transverse rivers early in the plate collision history. A transition to Pliocene dextral strike-slip faulting and widespread uplift led to cycles of river channel offset, deflection and capture of tributaries draining across active faults, and headward erosion and captures by major transverse rivers within the western MFS. We predict a similar landscape will evolve south of the Hope Fault, as the locus of plate boundary deformation migrates southward into this region with time.
Kimberlites provide rich information about the composition and evolution of cratonic lithosphere. Accurate geochronology of these eruptions is key for discerning spatiotemporal trends in lithospheric evolution, but kimberlites can sometimes be difficult to date with available methods. We explored whether (U-Th)/He dating of zircon and perovskite can serve as reliable techniques for determining kimberlite emplacement ages. We obtained zircon and/or perovskite (U-Th)/He (ZHe, PHe) dates from sixteen southern African kimberlites. Most samples with abundant zircon yielded reproducible ZHe dates (≤15% dispersion) that are in good agreement with published eruption ages. The majority of dated zircon were xenocrystic. Zircons with reproducible dates were fully reset during eruption or resided at temperatures above the ZHe closure temperature prior to entrainment in the kimberlite magma. Not dating hazy and radiation damaged grains can help avoid anomalous results for more shallowly sourced zircons that underwent incomplete damage annealing and/or partial He loss during the eruptive process. All seven kimberlites dated with PHe yielded reproducible (≤15% dispersion) and reasonable results. We conducted two preliminary perovskite 4He diffusion experiments, which suggest a PHe closure temperature of >300°C. Perovskite in kimberlites is unlikely to be xenocrystic and its relatively high temperature sensitivity suggests that PHe dates will typically record emplacement rather than post-emplacement processes. ZHe and PHe geochronology can effectively date kimberlite emplacement and provide useful complements to existing techniques. This article is protected by copyright. All rights reserved.