Abstract The Chinese medicine Qiliqiangxin (QL) has been shown to have a protective role in heart failure. Here, we explore the underlying working mechanism of the key therapeutic component in QL using a rat model of heart failure. Heart failure after myocardial infarction was induced surgically and confirmed using echocardiography; a separate group of rats underwent sham surgery. The rats with heart failure were randomly assigned to receive QL, the angiotensin-converting enzyme inhibitor benazepril, or placebo groups. Blood samples were collected from the rats at four time points for up to 8 weeks and used for biochemical analysis and mass spectrometry‒based metabolomics profiling. In total, we measured nine well-known biochemical parameters of heart failure and 147 metabolites. In the rats with heart failure, QL significantly improved these biochemical parameters and metabolomics profiles, significantly increasing the cardioprotective parameter angiopoietin-like 4 and significantly lowering inflammation-related oxylipins and lysophosphatidic acids compared to benazepril. Mechanistically, QL may improve outcome in heart failure by controlling inflammatory process and cardiac hypertrophy. Clinical studies should be designed in order to investigate these putative mechanisms in patients.
Triaxial fracturing modeling experiments were carried out on whole diameter shale cores from different layers of Shahejie Formation in the Dongpu sag, Bohai Bay Basin to find out the vertical propagation shapes of hydraulic fractures in different reservoirs. A numerical simulation method of inserting global cohesive elements was adopted to build a pseudo-three-dimension fracture propagation model for multiple shale oil reservoirs considering interface strength, perforation location, and pump rate to research the features of hydraulic fracture (HF) penetrating through layers. The hydraulic fracture propagates in a cross pattern in tight sandstone layers, in a straight line in sandstone layers with natural fractures, forms ladder fracture in shale layers with beddings. The hydraulic fracture propagates in a stripe shape vertically in both sandstone and shale layers, but it spreads in the plane in shale layers after connecting beddings. Restricted by beddings, the hydraulic fractures in shale layers are smaller in height than those in sandstone layers. When a sandstone layer and a shale layer are fractured at the same time, the fracture extends the most in height after the two layers are connected. Perforating at positions where the sandstone-shale interface is higher in strength and increasing the pumping rate can enhance the fracture height, thus achieving the goal of increasing the production by cross-layer fracturing in multiple shale oil layers.
In the fission yeast, Schizosaccharomyces pombe, tolerance to high sodium and lithium concentrations requires the functioning of the sod2, Na+/H+ antiporter. We have directly measured the activity of this antiporter and demonstrated reconstitution of the activity in gene deletion strains. In addition, we have shown that it can be transferred to, and its antiporter activity detected in, the budding yeast, Saccharomyces cerevisiae, where it also confers sodium and lithium tolerance. Proton flux through the S. pombe Na+/H+ antiporter was directly measured using microphysiometry. The direction of transmembrane proton flux mediated by this antiporter was reversible, with protons being imported or exported in response to the external concentration of sodium. This bidirectional activity was also detected in S. cerevisiae strains expressing sod2 and expression of this gene complemented the sodium and lithium sensitivity resulting from inactivation of the ENA1/PMR2 encoded Na+-exporting ATPases. This suggests that antiporters or sodium pumps can be utilized interchangeably by S. cerevisiae to regulate internal sodium concentration. Potent inhibitors of mammalian Na+/H+ exchangers were found to have no effect on sod2 activity. The proton flux mediated by sod2 was also found to be unaffected by perturbation of membrane potential or the plasma membrane proton gradient.
Abstract The desert is a harsh habitat for flora and microbial life due to its aridness and strong radiation. In this study, we constructed the first complete and deeply annotated genome of the genus Pontibacter ( Pontibacter korlensis X14-1 T = CCTCC AB 206081 T , X14-1). Reconstruction of the sugar metabolism process indicated that strain X14-1 can utilize diverse sugars, including cellulose, starch and sucrose; this result is consistent with previous experiments. Strain X14-1 is also able to resist desiccation and radiation in the desert through well-armed systems related to DNA repair, radical oxygen species (ROS) detoxification and the OstAB and TreYZ pathways for trehalose synthesis. A comparative transcriptomic analysis under gamma radiation revealed that strain X14-1 presents high-efficacy operating responses to radiation, including the robust expression of catalase and the manganese transport protein. Evaluation of 73 novel genes that are differentially expressed showed that some of these genes may contribute to the strain’s adaptation to radiation and desiccation through ferric transport and preservation.
Introduction Ultrasound-guided internal branch of the upper laryngeal nerve block (USG-guided iSLN block) have been used to decrease the perioperative stress response of intubation. It is more likely to be successful than blindly administered superior laryngeal nerve blocks with fewer complications. Here, we evaluated the efficacy of USG-guided iSLN block to treat postoperative sore throat (postoperative sore throat, POST) after extubation. Methods 100 patients, aged from 18 to 60 years old, ASA I~II who underwent general anesthesia and suffered from the moderate to severe postoperative sore throat after extubation were randomized into two groups(50 cases per group). Patients in group S received USG-guided iSLN block bilaterally (60mg of 2% lidocaine, 1.5ml each side), whereas those in group I received inhalation with 100 mg of 2% lidocaine and 1mg of budesonide suspension diluted with normal saline (oxygen flow 8 L /min, inhalation for 15 minutes). The primary outcome were VAS scores in both groups before treatment (T0), 10 min (T1), 30 min(T2), 1h(T3), 2 h(T4), 4h(T5), 8h(T6), 24h(T7), and 48h(T8) after treatment. The secondary outcome were satisfaction scores after treatment, MAP, HR, and SPO2 fromT0 to T8. The adverse reactions such as postoperative chocking or aspiration, cough, hoarseness, dyspnea were also observed in both groups. Results Patients in group S had significantly lower VAS score than that in group I at points of T 1 ~ T 6 (P < 0.01). HR of group S was lower than that of group I at points of T 1 ~ T 2 and T4 (P < 0.05), and MAP was lower than that of group I at points of T 1 ~ T 3 (P < 0.05). Satisfaction scores of group S were higher than that of group I (P <0.05), In group S, 2 case (4%) needed to intravenous Flurbiprofen Injection 50 mg to relieve pain; in group I, 13 cases (26%) received Flurbiprofen Injection. 2 case of group S appeared throat numbness after treatment for 3 hours; 2 patients have difficult in expectoration after treatment recovered after 3hour. No serious adverse events were observed in both groups. Conclusion Compared with inhalation, USG-guided iSLN block may effectively relieve the postoperative sore throat after extubation under general anesthesia and provided an ideal treatment for POST in clinical work.
With the development of navigation satellite constellation systems, to improve navigation service and orbit determination performance, the accuracy requirements for maintaining temporal references have increased rapidly. Among the current navigation satellites, a dual one-way ranging (DOWR) approach based on intersatellite links (ISLs) is widely adopted in the BeiDou system and global positioning system (GPS) to transmit satellite time reference information. However, the accuracy of DOWR is restricted by the pseudonoise (PN) code rate. To improve the accuracy of DOWR, the PN code measurement must be replaced by the carrier phase measurement. This paper introduces an algorithm that utilizes frequency hopping to achieve carrier phase ranging. In addition to the high-precision advantages of carrier phase measurements, the anti-interference performance of the ranging signal is also improved due to the characteristics of the frequency hopping signal itself. Ultimately, at a carrier-to-noise ratio of 40 dB-Hz, the measurement accuracy is 9.54 μm, while the PN code measurement accuracy in the same environment is 0.13 m. As the carrier-to-noise ratio increases, the measurement accuracy further improves.