Inadequate land management and agricultural activities have largely resulted in land degradation in Burkina Faso. The nationwide governmental and institutional driven implementation and adoption of soil and water conservation measures (SWCM) since the early 1960s, however, is expected to successively slow down the degradation process and to increase the agricultural output. Even though relevant measures have been taken, only a few studies have been conducted to quantify their effect, for instance, on soil erosion and environmental restoration. In addition, a comprehensive summary of initiatives, implementation strategies, and eventually region-specific requirements for adopting different SWCM is missing. The present study therefore aims to review the different SWCM in Burkina Faso and implementation programs, as well as to provide information on their effects on environmental restoration and agricultural productivity. This was achieved by considering over 143 studies focusing on Burkina Faso’s experience and research progress in areas of SWCM and soil erosion. SWCM in Burkina Faso have largely resulted in an increase in agricultural productivity and improvement in food security. Finally, this study aims at supporting the country’s informed decision-making for extending already existing SWCM and for deriving further implementation strategies.
As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, extensive in-situ measurements of the southern West African atmospheric boundary layer (ABL) have been performed at three supersites Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria) during the 2016 monsoon period (June and July). The measurements were designed to provide data for advancing our understanding of the relevant processes governing the formation, persistence and dissolution of nocturnal low-level stratus clouds and their influence on the daytime ABL in southern West Africa. An extensive low-level cloud deck often forms during the night and persists long into the following day strongly influencing the ABL diurnal cycle. Although the clouds are of a high significance for the regional climate, the dearth of observations in this region has hindered process understanding. Here, an overview of the measurements ranging from near-surface observations, cloud characteristics, aerosol and precipitation to the dynamics and thermodynamics in the ABL and above, and data processing is given. So-far achieved scientific findings, based on the dataset analyses, are briefly overviewed.
Flood-related fatalities and associated economic losses have increased in Southern West Africa (SWA). The increased flood-associated damages highlighted the growing global concern for developing early warning forecast and control flood events in the region. This review has documented flood case studies in twelve countries within the area through a review of available literature. The Goddard Scattering Algorithm (GSCAT) methodology was adopted to investigate the contribution of Mesoscale Convective Systems (MCSs) to the selected flood cases. We comprehensively reviewed sixteen high-impact rainfall events within SWA and specifically explored the contributions of MCSs to these floods. This review pointed out critical research gaps in the context of limited documentation of the bulk of flood cases in the region. Also, the need for more studies into what meteorological events cause floods in the region. Our findings showed that the floods had at least 31% and not more than 60% MCSs contributions in the area. Therefore, the study recommends increased flood case studies and more research that establishes the synoptic and dynamic environments of flood cases within South-Western Africa.
A comparative analysis of the sensitivity of NDVI and EVI to rainfall indicators has been carried out for different land use/covers in the Southwest of Burkina Faso. Three classified land use/covers maps for 1999, 2006 and 2011 were produced and change detection was applied to locate persistent areas. Thereafter monthly vegetation indices of plots of 750 × 750 m2 were extracted from 2001 to 2011 for persistent woodland, mixed vegetation, and agricultural area within 5 km radius around four rain gauges. Furthermore, correlation analysis to measure the relationship between vegetation indices and rainfall indicators was performed. The results indicate some similarities between NDVI and EVI. Both indices, for all land use/covers, showed significant and strong positive correlation with the rainfall indicators. In general, NDVI was more sensitive to rainfall than EVI in the study area, but the difference between the Pearson’s coefficient values of both vegetation indices was insignificant. The findings of this work agree with some previous studies, but contrasting conclusions were also noted in literature. Hence wider spatial investigation will be necessary to confirm the results of this paper.
"The Ewiem Nimdie Summer School Series in Ghana: Capacity Building in Meteorological Education and Research—Lessons Learned and Future Prospects" published on May 2012 by American Meteorological Society.
The vertical profiles of temperature and water vapour from the Atmospheric InfraRed Sounder (AIRS) have been validated across various regions of the globe as an effort to provide a substitute for radiosonde observations. However, there is a paucity of inter-comparisons over West Africa where local convective processes dominate and radiosonde observations (RAOBs) are limited. This study validates AIRS temperature and relative humidity profiles for selected radiosonde stations in West Africa. Radiosonde data were obtained from the AMMA and DACCIWA campaigns which spanned 2006–2008 and June–July 2016 respectively and offered a period of prolonged radiosonde observations in West Africa. AIRS performance was evaluated with the bias and root mean square difference (RMSD) at seven RAOB stations which were grouped into coastal and inland. Evaluation was performed on diurnal and seasonal timescales, cloud screening conditions and derived thunderstorm instability indices. At all timescales, the temperature RMSD was higher than the AIRS accuracy mission goal of ±1 K. Relative humidity RMSD was satisfactory with deviations <20% and <50% for both lower and upper troposphere respectively. AIRS retrieval of water vapour under cloudy and cloud-free conditions had no significant difference whereas cloud-free temperature was found to be more accurate. The seasonal evolution of some thunderstorm convective indices were also found to be comparable for AIRS and RAOB. The ability of AIRS to capture the evolution of these indices imply it will be a useful dataset for the African Science for Weather Information and Forecasting Techniques (SWIFT) high impact weather studies.
ABSTRACT Various sectors of the country's economy – agriculture, health, energy, among others – largely depend on climate information, hence availability of quality climate data is very essential for climate‐impact studies in these sectors. In this paper, a monthly rainfall database (GMet v1.0) has been developed at a 0.5 ° × 0.5 ° spatial resolution, from 113 Ghana Meteorological Agency (GMet) gauge network distributed across the four agro‐ecological zones of Ghana, and spanning a 23‐year period (1990–2012). The datasets were first homogenized with quantile‐matching adjustments and thereafter, gridded at a spatial resolution of 0.5 ° × 0.5 ° using Minimum Surface Curvature with tensioning parameter, allowing for comprehensive spatial fields assessment on the developed dataset. Afterwards, point‐pixel validation was performed using GMet v1.0 against gauge data from stations that were earlier excluded due to large datagaps. This proved the reliability of GMet v1.0, with high and statistically significant correlations at 99% confidence level, and relatively low biases and rmse. Furthermore, GMet v1.0 was compared with GPCC and TRMM rainfall estimates, with both products found to adequately mimick GMet v1.0, with high correlations which are significant at 99% confidence level, low biases and rmse. In addition, the ratio of 90 th – percentile provided fairly similar capture of extremes by both TRMM and GPCC, in relation to GMet v1.0. Finally, based on annual rainfall totals and monthly variability, k ‐means cluster analysis was performed on GMet v1.0, which delineated the country into four distinct climatic zones. The developed rainfall data, when officially released, will be a useful product for climate impact and further rainfall validation studies in Ghana.
In regions of sparse gauge networks, satellite rainfall products are mostly used as surrogate measurements for various rainfall impact studies. Their potential to complement rain gauge measurements is influenced by the uncertainties associated with them. This study evaluates the performance of satellites and merged rainfall products over Ghana in order to provide information on the consistency and reliability of such products. Satellite products were validated with gridded rain gauge data from the Ghana Meteorological Agency (GMet) on various time scales. It was observed that the performance of the products in the country are mostly scale and location dependent. In addition, most of the products showed relatively good skills on the seasonal scale (r > 0.90) rather than the annual, and, after removal of seasonality from the datasets, except ARC2 that had larger biases in most cases. Again, all products captured the onsets, cessations, and spells countrywide and in the four agro-ecological zones. However, CHIRPS particularly revealed a better skill on both seasonal and annual scales countrywide. The products were not affected by the number of gauge stations within a grid cell in the Forest and Transition zones. This study, therefore, recommends all products except ARC2 for climate impact studies over the region.