Abstract Seismic slip zones convey important information on earthquake energy dissipation and rupture processes. However, geological records of earthquakes along exhumed faults remain scarce. They can be traced with a variety of methods that establish the frictional heating of seismic slip, although each has certain assets and disadvantages. Here we describe a mineral magnetic method to identify seismic slip along with its peak temperature through examination of magnetic mineral assemblages within a fault zone in deep‐sea sediments cored from the Japan Trench—one of the seismically most active regions around Japan—during the Integrated Ocean Drilling Program Expedition 343, the Japan Trench Fast Drilling Project. Fault zone sediments and adjacent host sediments were analyzed mineral magnetically, supplemented by scanning electron microscope observations with associated energy dispersive X‐ray spectroscopy analyses. The presence of the magnetic mineral pyrrhotite appears to be restricted to three fault zones occurring at ~697, ~720, and ~801 m below sea floor in the frontal prism sediments, while it is absent in the adjacent host sediments. Elevated temperatures and coseismic hot fluids as a consequence of frictional heating during earthquake rupture induced partial reaction of preexisting pyrite to pyrrhotite. The presence of pyrrhotite in combination with pyrite‐to‐pyrrhotite reaction kinetics constrains the peak temperature to between 640 and 800°C. The integrated mineral‐magnetic, microscopic, and kinetic approach adopted here is a useful tool to identify seismic slip along faults without frictional melt and establish the associated maximum temperature.
SUMMARY Magnetic susceptibility and natural remanent magnetization of rocks are useful parameters to study geological structures and geodynamic processes. Traditional widely used algorithms for the inversion of magnetic data can recover the distribution of the apparent susceptibility or total magnetization intensity, but do not provide information on the remanent magnetization. In this paper, we propose a framework to directly invert for the magnetic susceptibility and the natural remanent magnetization vector using surface or airborne magnetic data, assuming that the Köenigsberger ratio of the rock is known or approximately deducible. The susceptibility and remanence are computed using two different approaches: (1) the susceptibility, intensity, and direction of the remanent magnetization are continuously recovered for each discretized cell and (2) the remanence direction is assumed to be uniform in each subzone and is iteratively computed as discrete values. Both processes are implemented using the preconditioned conjugate gradient algorithm. The method is tested on three synthetic models and one field data set from the Zaohuohexi iron-ore deposit, Qinghai Province, northwest China. The results of the continuous inversion show the trend of the remanent magnetization directions, while the discrete inversion yields more specific values. This inversion framework can determine the source bodies’ geometry and position, and also provide superposed and comprehensive information on the natural remanent magnetization, which may be useful to investigate geological bodies bearing stable primary remanent magnetization.
Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records.
Paleontological data were collected using microscopes and recorded in the JRSO description software. All data for a species group (e.g., diatoms or nannofossils) were collected in a Microsoft Excel worksheet by hole. A zip file of the entire expedition's observations is also available.
Frictional heating during earthquake rupture reveals important information on earthquake mechanisms and energy dissipation. The amount of annealing varies widely and is, as yet, poorly constrained. Here we use magnetic susceptibility versus temperature measurements during cycling to increasingly elevated temperatures to constrain the maximum temperature a slip zone has experienced. The case study comprises sheared clay cored from the Japan Trench subduction plate-boundary fault zone (décollement), which accommodated the large slip of the 2011 Mw 9.0 Tohoku-oki earthquake. The décollement was cored during the Integrated Ocean Drilling Program (IODP) Expedition 343, the Japan Trench Fast Drilling Project (JFAST). Heating signatures with estimated maximum temperatures ranging from ∼300 to over 500 °C are determined close to the multiple slip surfaces within the décollement. Since it is impossible to tie a specific slip surface to a certain earthquake, thermal evidence for the cumulative effect of several earthquakes is unveiled. This as yet preliminary rock magnetic 'geothermometer' would be a useful tool to detect seismic heating along faults that experienced medium temperature rise, a range which is difficult to assess with other approaches.
P-wave velocity data were measured on undisturbed section halves using pairs of piezoelectric transducers mounted in bayonets that are inserted into soft sediment along the JRSO-defined y-axis and/or z-axis. Report includes P-wave velocity in y and/or z direction, bayonet separation, traveltime between transducers, and first arrival picks.