logo
    Thermal Alteration of Pyrite to Pyrrhotite During Earthquakes: New Evidence of Seismic Slip in the Rock Record
    17
    Citation
    97
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Seismic slip zones convey important information on earthquake energy dissipation and rupture processes. However, geological records of earthquakes along exhumed faults remain scarce. They can be traced with a variety of methods that establish the frictional heating of seismic slip, although each has certain assets and disadvantages. Here we describe a mineral magnetic method to identify seismic slip along with its peak temperature through examination of magnetic mineral assemblages within a fault zone in deep‐sea sediments cored from the Japan Trench—one of the seismically most active regions around Japan—during the Integrated Ocean Drilling Program Expedition 343, the Japan Trench Fast Drilling Project. Fault zone sediments and adjacent host sediments were analyzed mineral magnetically, supplemented by scanning electron microscope observations with associated energy dispersive X‐ray spectroscopy analyses. The presence of the magnetic mineral pyrrhotite appears to be restricted to three fault zones occurring at ~697, ~720, and ~801 m below sea floor in the frontal prism sediments, while it is absent in the adjacent host sediments. Elevated temperatures and coseismic hot fluids as a consequence of frictional heating during earthquake rupture induced partial reaction of preexisting pyrite to pyrrhotite. The presence of pyrrhotite in combination with pyrite‐to‐pyrrhotite reaction kinetics constrains the peak temperature to between 640 and 800°C. The integrated mineral‐magnetic, microscopic, and kinetic approach adopted here is a useful tool to identify seismic slip along faults without frictional melt and establish the associated maximum temperature.
    Abstract The behavior of slip close to the trench during earthquakes is not well understood, and observations of large earthquakes breaking the near trench fault surface are rare. The 1995 M w 8.0 Jalisco earthquake seems to have broken the near‐trench area, as evidenced by large M s ‐M w disparity, small high‐frequency radiated energy compared to total energy, and low E r / M 0 ratios, in addition to several finite slip models showing large slip near the trench. However, slip models obtained using campaign Global Positioning System data suggest slip near shore. In this study we try to answer whether this event was a near‐trench event or not, by inverting teleseismic P , S , Rayleigh, and Love waves, as well as campaign Global Positioning System static offsets, either separately or jointly, to obtain the slip distribution on the fault as a function of time. We find two possible end‐member scenarios consistent with observed data: (1) coseismic slip distributed between coast and trench and no (or very little) postseismic slip and (2) coseismic slip principally near the trench with large (up to 1.8 m) aseismic slip occurring in the first 5–10 days after the earthquake, with a total moment corresponding to 16% of that of the event. We are unable to distinguish between these two end‐member scenarios by tsunami modeling and finally are neither able to conclude or exclude that the event was a typical near trench event.
    Moment magnitude scale
    Citations (11)
    We estimate the slip distribution from the M W 8.1 Solomon Islands earthquake in 2007, from two post‐seismic surveys measuring uplifted coral and submerged coastal features. The occurrence of islands extremely proximal to the trench and nucleation of rupture allowed for the collection of unprecedented coseismic deformation dataset along a large megathrust earthquake. Using data from the two surveys along the southeastern half of the slip zone within five weeks of the event, we model the elastic dislocation to identify the optimal (29°), and alternate (20°), dip and distribution of thrust along the southern rupture. The vertical deformation, which includes both coseismic and early postseismic deformation, has highly variable and large slip within 25 km of the trench and straddling Ranongga Island. The shallow focus of slip in the near‐trench area may explain the locally high tsunami run‐up on portions of Simbo Island, however the aseismic contribution of afterslip remains unknown.
    Tsunami earthquake
    Citations (49)
    Abstract The M w 8.8 megathrust earthquake that occurred on 27 February 2010 offshore the Maule region of central Chile triggered a destructive tsunami. Whether the earthquake rupture extended to the shallow part of the plate boundary near the trench remains controversial. The up-dip limit of rupture during large subduction zone earthquakes has important implications for tsunami generation and for the rheological behavior of the sedimentary prism in accretionary margins. However, in general, the slip models derived from tsunami wave modeling and seismological data are poorly constrained by direct seafloor geodetic observations. We difference swath bathymetric data acquired across the trench in 2008, 2011 and 2012 and find ~3–5 m of uplift of the seafloor landward of the deformation front, at the eastern edge of the trench. Modeling suggests this is compatible with slip extending seaward, at least, to within ~6 km of the deformation front. After the M w 9.0 Tohoku-oki earthquake, this result for the Maule earthquake represents only the second time that repeated bathymetric data has been used to detect the deformation following megathrust earthquakes, providing methodological guidelines for this relatively inexpensive way of obtaining seafloor geodetic data across subduction zone.
    Seafloor Spreading
    Tsunami earthquake
    Accretionary wedge
    Citations (57)
    Abstract Since the giant 2011 Tohoku earthquake and tsunami, much research has focused on the distribution of coseismic slip at shallow depths during this subduction megathrust event. Here we present seismic images obtained in the immediate vicinity of the trench axis, that show thrust faults and fold-and-thrust type deformation structures near the epicenter of the 2011 Tohoku earthquake where the large coseismic slip has been inferred, and chaotic structure and the absence of thrust faults in northern and southern source areas. Seismic profiles show evidence of slope failures of the trench inner wall in a proposed tsunami source region around 39°–40° N, where the slips estimated from previous studies are in disagreement. Our results show that structural characteristics in the trench axis may be related to the occurrence of shallow megathrust slip and tsunamigenesis in the Japan Trench.
    Thrust fault
    Epicenter
    Citations (15)
    The strong ground motions, large crustal deformation, and tsunami generated by the 2011 Tohoku-oki earthquake ( M w 9.1) reveal that a large coseismic slip likely propagated to shallow depth in the Japan Trench. Although data acquired by onshore networks cannot resolve the slip behavior of the updip fault rupture, marine geophysical and geological studies provide direct evidence of coseismic slip to the trench. Differential bathymetry data show ∼50 m of coseismic seafloor displacement extending to the central Japan Trench (38–39.2°N). Seismic data show that coseismic slip ruptured the seafloor within the trench. Pelagic clays may have promoted slip propagation to shallow depths, whereas disturbed/metamorphosed clays may have restricted slip to the main rupture zone. Those observations imply that a smooth, broadly distributed, weak, clay-rich sediment in a shallow part of a subduction zone is a characteristic factor that can foster a large coseismic slip to the trench and, consequently, the generation of a large tsunami. ▪ During the 2011 Tohoku-oki earthquake ( M w 9.1), more than ∼50 m of slip occurred on a fault that ruptured the seafloor in the central Japan Trench. ▪ The fault rupture reaching the seafloor caused a large tsunami. ▪ Marine geophysical explorations revealed that a clay-rich sediment in the subduction zone was one factor fostering the large fault slip. ▪ Understanding of slip behavior in the shallow portion of a subduction zone will help us prepare for future large tsunamis along the Japan-Kuril Trench.
    Seafloor Spreading