logo
    Reliability of water supply from stormwater harvesting and managed aquifer recharge with a brackish aquifer in an urbanising catchment and changing climate
    48
    Citation
    25
    Reference
    10
    Related Paper
    Citation Trend
    Lower Apalachicola-Chattahoochee-Flint (ACF) River Basin, southeastern United States (U.S.). Excessive groundwater withdrawal for irrigation from the Upper Floridan Aquifer is an important issue in the lower ACF River Basin as it has led to decline in groundwater levels as well as reduction in baseflows. Since the withdrawal is projected to further increase in the future, this study evaluated the impacts of the projected increase in irrigation on the groundwater levels as well as the stream-aquifer flux in the region. The study also identified regions that are most important for groundwater recharge. Evaluation of the geohydrologic zones identified Upland Instream Karst as the most sensitive zone for recharge into the aquifer while zones in the region where the aquifer thickness was comparatively lower and close to the land surface was generally identified as sensitive. Simulation of the projected irrigation scenario predicted a reduction in groundwater levels by as much as 2.38 m, while a general reduction was predicted in much of the model domain. Large groundwater level reductions were mostly predicted in regions where the aquifer is comparatively thinner. Evaluation of the changes in stream-aquifer flux showed that flux reduced by as much as 33 % with large reductions predicted in the Lower Flint and Kinchafoonee watersheds. This study also helped identify localized zones and stream sections most susceptible to the impacts of increase in irrigation.
    MODFLOW
    Groundwater discharge
    Groundwater model
    Citations (15)
    Overexploitation
    Depression-focused recharge
    Sustainable yield
    Groundwater Pollution
    Montoyas watershed in central New Mexico, a rapidly urbanizing basin characteristic for the semiarid Southwestern United States. The 142 km2 watershed drains to the Rio Grande. This study evaluated the impacts of urbanization and stormwater infrastructure on ephemeral channel transmission loss (TL), an important source of groundwater recharge in dryland basins. A hydrologic model (HEC-HMS) was built for the watershed and calibrated based on seven years of precipitation and discharge data. The model was then used to simulate the individual and combined impacts of land use change (urbanization) and stormwater infrastructure (ponds, channel lining) on runoff and transmission losses over a ten-year period based on observed storm events. Results show high inter-annual runoff variability with the two wettest years contributing 44–59% of the 10-year total, and dry years resulting in nearly no flow. Both runoff and TL increased with urbanization. Assuming natural ephemeral channels, TL comprised 64–81% of runoff reaching the basin outlet and 7–10% of domestic water use in the basin, depending on urbanization scenario. Stormwater detention ponds had minimal impact on TL; however, lining the lower 5, 10 and 15 km of ephemeral streams reduced TL by 31%, 55% and 73% over the ten-year study period. Results indicate that preservation of ephemeral channels, in particular permeable channel beds, should be considered a viable strategy for managed aquifer recharge in urbanizing areas.
    Ephemeral key
    Retention basin
    Diffuse pollution is a significant and sometimes even major component of surface water pollution. Diffuse inputs of pollutants to the surface water are related to runoff of precipitation. This means that the analysis of diffuse pollutant fluxes from the land surface to the surface water requires an analysis of water fluxes. In this paper we have modelled the average long-term total runoff, groundwater recharge index and groundwater residence times for two large European river basins (Rhine and Elbe). We applied and compared two independently developed and recently published methods. We found that with the available large-scale databases and methods we could simulate successfully the regional patterns of the average long-term total runoff. The reported groundwater recharge indices and groundwater residence times should be interpreted as estimates based on available knowledge and databases. They do not represent absolute values, but illustrate the possible travel times and spatial patterns of the different runoff components that have to be taken into account for the analysis of diffuse pollution at large regional and temporal scales. Copyright © 2000 John Wiley & Sons, Ltd.