logo
    Progressive change in dislocation microstructures in shocked calcite with pressure: Characterization of micrometeoroid bombardment on asteroid Ryugu
    1
    Citation
    0
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Shock recovery experiments were performed using a two-stage light gas gun to clarify the progressive deformation microstructures of calcite at the submicron scale concerning pressure. Decaying compression pulses were produced using a projectile that was smaller than the natural marble target. In two experiments, natural marble samples were shocked to 13 and 18 GPa at the epicenters of the targets. Calcite grains shocked in the pressure range of 1.1–18 GPa were examined using polarized light microscopy and (scanning) transmission electron microscopy. The density of free dislocations in the grains shocked at 1.1–2.2 GPa [108–9 (cm-2)] is comparable to that of unshocked Carrara calcite grains. Subparallel bands of entangled dislocations less than 1 µm are formed at 4.2 GPa, and strongly entangled dislocations spread throughout the focused ion beam (FIB) sections at 7.3–18 GPa pressures. Dislocations selectively nucleate and entangle near the slip planes at pressures above ~3 GPa, corresponding to the transition from sharp extinction to undulatory extinction, according to the microstructural evolution with shock pressure. Above approximately 6 GPa, the dislocations nucleated homogeneously throughout the calcite crystals. The dislocation microstructure in a calcite grain collected from the asteroid Ryugu particle is similar to that of the experimentally shocked calcite at 4.2 GPa. The estimated pressure of 2–3 GPa, determined through fault mechanics analyses and the presence of dense sulfide minerals in the Ryugu particles, is in line with this pressure.
    Keywords:
    Micrometeoroid
    Characterization
    The compressibility of calcite to 40 kbar has been remeasured by using a piston-cylinder apparatus. Calcite 1 is found to transform to calcite 2 at 14.5 kbar with a volume change of 0.00483 cm3/g, and calcite 2 is found to change to calcite 3 at 17.4 kbar with a volume change of 0.01291 cm3/g. The volume compression data for the three phases are described by the following quadratic relations: Calcite 1 Calcite 2 Calcite 3 where P is pressure in kilobars. The compression data for calcite 1 and calcite 3 are in good agreement with those available in the literature. The data exhibiting an abnormally high compression of calcite 2 have been reported for the first time. The compression data for calcite 2 have been used to explain quantitatively the abnormal drop near 15 kbar observed in the ultrasonic sound velocity in calcite.
    Citations (113)
    ▪ Abstract Visible and near-infrared spectra of reflected sunlight from asteroid surfaces exhibit features that hold the promise for identifying surface mineralogy. However, the very surfaces that are observed by remote-sensing are also subject to impingement by micrometeoroids and solar wind particles, which are believed to play the dominant role in space weathering, which is the time-dependent modification of an asteroid's reflectance spectrum. Such space weathering has confused the interpretations of telescopic spectra of asteroids, especially concerning the possible association of common ordinary chondritic meteorites with so-called S-type asteroids. Recent spacecraft studies of asteroids (especially of Eros by NEAR-Shoemaker) have documented aspects of space weathering processes, but we still do not understand the physics of space weathering well enough to confidently assay mineralogy of diverse asteroids by remote-sensing. A review of the intellectual history of this topic reveals the complexity of interdisciplinary research on far-away astronomical bodies.
    Space weathering
    Micrometeoroid
    Ordinary chondrite
    ABSTRACT Mineralogical analysis of calcite and Mg‐calcite by X‐ray diffraction requires that the samples be ground to a powder. Such grinding determines the particle size of the powder and the structural damage of the minerals. Both of these in turn affect the peak intensities recorded by the X‐ray machine. Most carbonate sediments are inhomogeneous; they contain both calcite and Mg‐calcite which are affected differently by grinding. Such differences cause quantitative analytical results to be inconsistent with the true mineralogical abundance. The two acceptable methods of analysis—(1) measurement of peak height from the base and (2) measurement of the area under the peak—were compared to determine if sample preparation affects the quantitative results. In samples with variable and relatively small amounts of calcite and Mg‐calcite the measurement of peak height yields more reproducible results than does the measurement of peak areas. Different proportions of particle size of the mineralogical components in a sample powder, affect proportionally more the peak areas than the peak heights. Extensive grinding causes structural damage of the component minerals which affects much more the peak areas than the peak heights. Thus for quantitative analyses of calcite and Mg‐calcite in inhomogeneous carbonate samples which require differing grinding times and have greatly variable amounts of calcite and Mg‐calcite, the peak height measurement seems to be a better method than peak area measurement.