logo
    Widespread convergence towards functional optimization in the lower jaws of crocodile-line archosaurs
    1
    Citation
    60
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Extant crocodilian jaws are subject to functional demands induced by feeding and hydrodynamics. However, the morphological and ecological diversity of extinct crocodile-line archosaurs is far greater than that of living crocodilians, featuring repeated convergence towards disparate ecologies including armoured herbivores, terrestrial macropredators and fully marine forms. Crocodile-line archosaurs, therefore, present a fascinating case study for morphological and functional divergence and convergence within a clade across a wide range of ecological scenarios. Here, we build performance landscapes of two-dimensional theoretical jaw shapes to investigate the influence of strength, speed and hydrodynamics in the morphological evolution of crocodile-line archosaur jaws, and test whether ecologically convergent lineages evolved similarly optimal jaw function. Most of the 243 sampled jaw morphologies occupy optimized regions of theoretical morphospace for either rotational efficiency, resistance to Von Mises stress, hydrodynamic efficiency or a trade-off between multiple functions, though some seemingly viable shapes remain unrealized. Jaw speed is optimized only in a narrow region of morphospace whereas many shapes possess optimal jaw strength, which may act as a minimum boundary rather than a strong driver for most taxa. This study highlights the usefulness of theoretical morphology in assessing functional optimality, and for investigating form–function relationships in diverse clades.
    Keywords:
    Convergent evolution
    Divergence (linguistics)
    Abstract Although convergence is a common evolutionary phenomenon, few studies have quantified its prevalence across a large, densely sampled clade. Large-scale phylogenies and the advent of novel computational methods facilitate more robust identification of convergent events and their statistical significance. The tanagers (Aves: Thraupidae), the largest family of songbirds, offer an excellent opportunity to study the extent of phenotypic convergence in response to similar ecological pressures on a continental scale. To investigate convergence in the group, we used the largest phylogenetic and multivariate morphological dataset to date for the clade. First, we used phylogenetic comparative analyses to show a correlation between diet and aspects of bill shape. We then investigated our dataset for the presence and magnitude of convergent events and assessed significance through simulations and modeling analyses. Overall, we found that around half (45.3%) of species and clades we tested have converged in morphological space more than would be expected by chance alone. Our study shows that across Thraupidae, various bill shapes have evolved convergently to fill multiple distinct sections of ecological niche space, reflecting a signal of ecological opportunity and structural constraints.
    Convergent evolution
    Phylogenetic comparative methods
    Identification
    Citations (2)
    The ability to enrol for protection is an effective defensive strategy that has convergently evolved multiple times in disparate animal groups ranging from euarthropods to mammals. Enrolment is a staple habit of trilobites, and their biomineralized dorsal exoskeleton offered a versatile substrate for the evolution of interlocking devices. However, it is unknown whether trilobites also featured ventral adaptations for enrolment. Here, we report ventral exoskeletal adaptations that facilitate enrolment in exceptionally preserved trilobites from the Middle Ordovician Walcott-Rust Quarry in New York State, USA. Walcott-Rust trilobites reveal the intricate three-dimensional organization of the non-biomineralized ventral anatomy preserved as calcite casts, including the spatial relationship between the articulated sternites (i.e. ventral exoskeletal plates) and the wedge-shaped protopodites. Enrolment in trilobites is achieved by ventrally dipping the anterior margin of the sternites during trunk flexure, facilitated by the presence of flexible membranes, and with the close coupling of the wedge-shaped protopodites. Comparisons with the ventral morphology of extant glomerid millipedes and terrestrial isopods reveal similar mechanisms used for enrolment. The wedge-shaped protopodites of trilobites closely resemble the gnathobasic coxa/protopodite of extant horseshoe crabs. We propose that the trilobites' wedge-shaped protopodite simultaneously facilitated tight enrolment and gnathobasic feeding with the trunk appendages.
    Convergent evolution
    Citations (4)