logo
    Stabilizing inverse ringwoodite with defects, and a possible origin for the 560-km seismic discontinuity
    1
    Citation
    62
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Ringwoodite is an important mineral in the mantle transition zone, and its cationic disorder can profoundly affect its physicochemical properties, but there is currently much controversy about this disorder. In this study, we investigate the cation disorder states of pure Mg2SiO4-ringwoodite and defective ringwoodite under mantle transition zone conditions through DFT calculations and thermodynamic models. Two stable endmembers are seen, one with normal ringwoodite structure and the other with inverted structure (its Si atoms and half of its Mg atoms have swapped sites). Our results indicate that pure ringwoodite does not invert (swap Mg and Si cations) under normal mantle temperatures but the introduction of a Si-excess, Mg-deficient defect induces a swap at normal mantle temperatures and this swap is likely induced by a wide range of defects including water. Thus, in the presence of such a defect or similar defects the olivine phase transition sequence may then go from olivine to wadsleyite to inverse ringwoodite, and then normal ringwoodite. We calculate the seismic properties of normal and inverse ringwoodite and find significantly slower wave speeds in inverted ringwoodite. Due to this difference the presence of inverse ringwoodite may provide a potential explanation for the discontinuous interface of seismic waves at the depth of ∼560 km.
    Keywords:
    Ringwoodite
    We report ab initio atomistic simulations of hydrous silicate melts under deep upper mantle to shallow lower mantle conditions and use them to parameterise density and viscosity across the ternary system MgO-SiO2-H2O (MSH). On the basis of phase relations in the MSH system, primary hydrous partial melts of the mantle have 40-50 mol% H2O. Our results show that these melts will be positively buoyant at the upper and lower boundaries of the mantle transition zone except in very iron-rich compositions, where ≳ 75% Mg is substituted by Fe. Hydrous partial melts will also be highly inviscid. Our results indicate that if melting occurs when wadsleyite transforms to olivine at 410 km, melts will be buoyant and ponding of melts is unexpected. Box models of mantle circulation incorporating the upward mobility of partial melts above and below the transition zone suggest that the upper mantle becomes efficiently hydrated at the expense of the transition zone such that large differences in H2O concentration between the upper mantle, transition zone and lower mantle are difficult to maintain on timescales of mantle recycling. The MORB source mantle with ∼0.02-0.04 wt% H2O may be indicative of the H2O content of the transition zone and lower mantle, resulting in a bulk mantle H2O content of the order 0.5 to 1 ocean mass, which is consistent with geochemical constraints and estimates of subduction ingassing.
    Ringwoodite
    Stishovite
    Post-perovskite
    Peridotite
    Mantle plume
    Primitive mantle
    Citations (19)
    Abstract— Magnesium-iron olivine in the Sixiangkou L6 chondrite contains abundant fractures induced by plastic deformation during shock metamorphism. This study reports the discovery of lamellar ringwoodite that incoherently nucleated and grew along planar and irregular fractures in olivine. Magnesium-iron interdiffusion took place between olivine matrix and crystallizing ringwoodite at high pressures and high temperatures, which resulted in higher FeO content in ringwoodite lamellae than in olivine. This suggests that a quasi-hydrostatic high pressure lasting for several minutes should have been produced in the shock veins of the meteorite. The intracrystalline transformation of olivine to ringwoodite also has implications for phase transitions in subducting lithospheric slabs because planar and irregular fractures are commonly produced in olivine that suffered plastic deformation.
    Ringwoodite
    Shock metamorphism
    The first natural occurrence of ringwoodite lamellae was found in the olivine grains inside and in areas adjacent to the shock veins of a chondritic meteorite, and these lamellae show distinct growth mechanism. Inside the veins where pressure and temperature were higher than elsewhere, ringwoodite lamellae formed parallel to the [101] planes of olivine, whereas outside they lie parallel to the (100) plane of olivine. The lamellae replaced the host olivine from a few percent to complete. Formation of these lamellae relates to a diffusion-controlled growth of ringwoodite along shear-induced planar defects in olivine. The planar defects and ringwoodite lamellae parallel to the [101] planes of olivine should have been produced in higher shear stress and temperature region than that parallel to the (100) plane of olivine. This study suggests that the time duration of high pressure and temperature for the growth of ringwoodite lamellae might have lasted at least for several seconds, and that an intracrystalline transformation mechanism of ringwoodite in olivine could favorably operate in the subducting lithospheric slabs in the deep Earth.
    Ringwoodite
    Chromite
    Citations (62)
    An investigation into two shock-metamorphosed chondritic meteorites indicates that the intracrystalline transformations from olivine to high pressure polymorphs could take place at relatively low temperature(1000 ℃) in a large pressure regime(14.5 to 23 GPa).The intracrystalline transformation of olivine produced lamellar ringwoodite.No direct intracrystalline transformation from olivine to wadsleyite was observed.The lamellar ringwoodite consisting of crystallite aggregates replaced parent olivine along staking faults and planar fractures.An association consisting of wadsleyite and ringwoodite platelets,respectively,has also been observed in olivine of some meteorites.The wadsleyite was produced by replacing ringwoodite during pressure release as a result of retrograde-metamorphism.This study provides information for understanding geological settings and pressure and temperature conditions for the polymorphic transformation of olivine in the Earth's lithospheric subducting slabs.
    Ringwoodite
    Shock metamorphism
    Chromite
    Xenolith
    Peridotite
    Citations (2)
    Abstract The study of shock metamorphism of olivine might help to constrain impact events in the history of meteorites. Although shock features in olivine are well known, so far, there are processes that are not yet completely understood. In shock veins, olivine clasts with a complex structure, with a ringwoodite rim and a dense network of lamellae of unidentified nature in the core, have been reported in the literature. A highly shocked (S5‐6), L6 meteorite, Asuka 09584, which was recently collected in Antarctica by a Belgian–Japanese joint expedition, contains this type of shocked olivine clasts and has been, therefore, selected for detailed investigations of these features by transmission electron microscopy ( TEM ). Petrographic, geochemical, and crystallographic studies showed that the rim of these shocked clasts consists of an aggregate of nanocrystals of ringwoodite, with lower Mg/Fe ratio than the unshocked olivine. The clast's core consists of an aggregate of iso‐oriented grains of olivine and wadsleyite, with higher Mg/Fe ratio than the unshocked olivine. This aggregate is crosscut by veinlets of nanocrystals of olivine, with extremely low Mg/Fe ratio. The formation of the ringwoodite rim is likely due to solid‐state, diffusion‐controlled, transformation from olivine under high‐temperature conditions. The aggregate of iso‐oriented olivine and wadsleyite crystals is interpreted to have formed also by a solid‐state process, likely by coherent intracrystalline nucleation. Following the compression, shock release is believed to have caused opening of cracks and fractures in olivine and formation of olivine melt, which has lately crystallized under postshock equilibrium pressure conditions as olivine.
    Ringwoodite
    Shock metamorphism
    Fayalite
    Citations (16)
    Abstract The olivine-wadsleyite transformation is believed to occur at depths of about 410 km in the Earth, producing a major seismic discontinuity in this region of the Earth’s mantle. The mechanism of this phase transition controls the microstructures of the newly nucleated wadsleyite, the major phase of the upper part of the mantle transition zone, and thus impacts seismic observations in the region. Here, we study the microstructures produced by the olivine-wadsleyite transformation using in situ laboratory experiments at pressures and temperatures relevant for the mantle transition zone. We transform pure olivine samples in laser-heated diamond-anvil cells at pressures ranging from 12.3 to 20.2 GPa and temperatures of 1400–1730 K. At different steps of the transformation we measure the orientation and size distribution of individual sample grains using multigrain crystallography at synchrotron radiation sources. We find that the olivine to wadsleyite transformation is incoherent at the conditions of the mantle transition zone, and is probably dominated by nucleation of wadsleyite at grain boundaries of the parent olivine. Thus, we expect that seismic anisotropy near 410 km would drop significantly due to the randomized lattice preferred orientation of newly nucleated wadsleyite induced by the incoherent transformation.
    Ringwoodite
    Stishovite
    Peridotite
    Discontinuity (linguistics)
    Citations (3)