logo
    The significance of biowaste drying analysis as a key pre-treatment for transforming it into a sustainable biomass feedstock
    0
    Citation
    62
    Reference
    10
    Related Paper
    Abstract:
    The objective of this study is to investigate the drying kinetics of fruit and vegetable peel biowaste using a sustainable technique as a key-pretreatment for its conversion into useful feedstock. Biowaste represents a missed potential source of bioenergy and bioproducts, but moisture removal is required, and conventional drying methods are expensive since they require great quantity of energy supplied, almost always, by a non-renewable energy. In this study six batches with the same quantity of biowaste, and heterogeneous physical composition were dried under open-sun conditions. We evaluated the influence of the interaction between drying area and the initial moisture content on drying rate. Eight semi-theoretical models were fitted using Levenberg-Marquardt algorithm to predict drying rate, and their accuracy was assessed through goodness-of-fit tests. Maximum moisture content to preserve biomass (10%) was reached on 5
    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.
    Citations (324)