Exhumed Serpentinites and Their Tectonic Significance in Non‐Collisional Orogens
2
Citation
148
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract Exhumed serpentinites are fragments of ancient oceanic lithosphere or mantle wedge that record deep fluid‐rock interactions and metasomatic processes. While common in suture zones after closure of ocean basins, in non‐collisional orogens their origin and tectonic significance are not fully understood. We study serpentinite samples from five river basins in a segment of the non‐collisional Andean orogen in Ecuador (Cordillera Real). All samples are fully serpentinized with antigorite as the main polymorph, while spinel is the only relic phase. Watershed delineation analysis and in‐situ B isotope data suggest four serpentinite sources, linked to mantle wedge (δ 11 B = ∼−10.6 to −0.03‰) and obducted ophiolite (δ 11 B = −2.51 to +5.73‰) bodies, likely associated with Triassic, Jurassic‐Early Cretaceous, and potentially Late Cretaceous‐Paleocene high‐pressure (HP)–low‐temperature metamorphic sequences. Whole‐rock trace element data and in‐situ B isotopes favor serpentinization by a crust‐derived metamorphic fluid. Thermodynamic modeling in two samples suggests serpentinization at ∼550–500°C and pressures from 2.5 to 2.2 GPa and 1.0–0.6 GPa for two localities. Both samples record a subsequent overprint at ∼1.5–0.5 GPa and 680–660°C. In the Andes, regional phases of slab rollback have been reported since the mid‐Paleozoic to Late Cretaceous. This tectonic scenario favors the extrusion of HP rocks into the forearc and the opening of back‐arc basins. Subsequent compressional phases trigger short‐lived subduction in the back‐arc that culminates with ophiolite obduction and associated metamorphic rock exhumation. Thus, we propose that serpentinites in non‐collisional orogens are sourced from extruded slivers of mantle wedge in the forearc or obducted ophiolite sequences associated with regional back‐arc basins.Keywords:
Forearc
Obduction
Peridotite
Metamorphic core complex
Forearc
Cite
Citations (834)
Abstract Mantle source heterogeneity of arc‐related magmas was traditionally thought to be predominantly affected by slab‐derived components. However, the role of forearc serpentinites in causing subarc mantle heterogeneity remains poorly constrained. Here, we present the first Zn isotope data for lavas from the Mariana and Ryukyu subduction zones. Notably, the δ 66 Zn values of basaltic lavas from the Mariana arc (0.16–0.18‰) and southern Okinawa Trough (0.15–0.17‰) are generally lower (∼0.10‰) than those of the mid‐ocean ridge basalts (MORB) (0.27 ± 0.05‰). Since mantle melting and magmatic differentiation respectively induce heavy Zn isotope enrichment in primary and evolved magmas, while melt extraction yields the limited Zn isotope fractionation in the mantle, lavas with low δ 66 Zn values thus potentially indicate the addition of subducted components. The negative correlation between the δ 66 Zn values and the Ba/La ratios of the basaltic lavas suggests the involvement of isotopically light fluids in their mantle sources. Forearc serpentinites are typically characterized by extremely light Zn isotope compositions. Such forearc materials were likely dragged downward to subarc depths and released isotopically light Zn in fluids to modify the overlying mantle wedge, thereby producing low δ 66 Zn values in arc‐related magmas. Beyond subarc depths, forearc serpentinites are broken down completely, so light Zn isotope fluids are absent. Accordingly, the basalts from the middle Mariana and Okinawa Trough display MORB‐like δ 66 Zn values. Collectively, Zn isotope provides new insights into the role of the recycling of forearc serpentinites in generating chemical heterogeneity in the mantle source of subduction‐related magmas.
Forearc
Primitive mantle
Cite
Citations (16)
In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for a given thermal state through variations of fluid salinity. High-Cl fluids produced by serpentinization can mix with the source rocks of the volcanic arc and explain geochemical signatures of primitive magma inclusions. Signature of deep high-Cl fluids was also identified in forearc hot springs. These observations suggest the existence of fluid circulations between the forearc mantle and the hot spring hydrothermal system or the volcanic arc. Such circulations are also evidenced by recent magnetotelluric profiles.
Forearc
Underplating
Cite
Citations (21)
<p>The cold forearc mantle is a universal feature in global subduction zones and attributed to mechanically decoupling by the weak hydrous layer at the sub-forearc slab interface. Understanding the mechanical decoupling by the weak hydrous layer thus provides critical insight into the transition from subduction infancy to mature subduction since subduction initiation. Nevertheless, the formation and evolution of the weak hydrous layer by slab-derived fluids and its role during the transition have not been quantitatively evaluated by previous numerical models as it has been technically challenging to implement the mechanical decoupling at the slab interface without imposing ad hoc weakening mechanism. We here for the first time numerically demonstrate the formation and evolution down-dip growth of the weak hydrous layer without any ad hoc condition using the case of Southwest Japan subduction zone, the only natural laboratory on Earth where both the geological and geophysical features pertained to the transition since subduction initiation at ~17 Ma have been reported. Our model calculations show that mechanical decoupling by the spontaneous down-dip growth of the weak hydrous layer converts hot forearc mantle to cold mantle, explaining the pulsating forearc high-magnesium andesite (HMA) volcanism, scattered monogenetic forearc and arc volcanism, and Quaternary adakite volcanism. Furthermore, the weak hydrous layer providing a pathway for free-water transport toward the tip of the mantle wedge elucidates seismological observations such as large S-wave delay time and nonvolcanic seismic tremors as well as slab/mantle-originating geochemistry in the Southwest Japan forearc mantle.</p><p>&#160;</p>
Forearc
Slab
Decoupling (probability)
Adakite
Cite
Citations (0)
Abstract The weak slab interface controls long-term subduction dynamics. A weak hydrous layer at the slab interface promotes mechanical decoupling between the forearc mantle and the subducting slab and converts a hot forearc mantle to a cold mantle. Often referred to as a cold nose, the cold forearc mantle, plays a key role in the transition from subduction infancy to mature subduction. This study was the first to numerically demonstrate the self-consistent formation of a weak hydrous layer with permeability anisotropy based on the Southwest Japan subduction zone case, where transition-related geological features were present. Our models showed that mechanical decoupling by spontaneous downdip growth of the weak hydrous layer created a cold nose by converting a hot forearc mantle to a cold mantle. The emergence of a cold nose explained the migration of the forearc-to-arc volcanic front, expressed as the formation of mid-Miocene forearc high-magnesium andesite and Quaternary arc adakite. Furthermore, the weak hydrous layer providing a pathway for free-water transport toward the mantle wedge tip elucidates slab/mantle-derived geochemical components in deep groundwater as well as large S-wave delay times and non-volcanic seismic tremors in the forearc.
Forearc
Slab
Adakite
Volcanic arc
Slab window
Cite
Citations (2)
Abstract The effects of buoyant ridge subduction have been researched for decades. However, it remains unclear how this process influences magma chemistry. Here we use a compilation of geochemical data, well‐established geochemical proxies (i.e., Ba/Nb, Th/Nb) and mantle redox modeling (i.e., V/Sc, Cu) to propose that the subduction of a ridge underneath the central portion of the Vanuatu arc causes shallow‐angle subduction and the development of a slab tear. We suggest that the shallow slab pinches out the asthenospheric mantle and bulldozes ancient metasomatized lithospheric mantle from the forearc toward the main‐arc. Slab‐fluxed melting of this bulldozed material could account for the along‐arc 87 Sr/ 86 Sr‐ 143 Nd/ 144 Nd variations of the Vanuatu magmas. The influx of hot sub‐slab material into the Vanuatu arc mantle wedge through a slab tear produces magmatism within the forearc. Modeling of V/Sc and Cu systematics suggest that the mantle source of the forearc magmas has a higher f O 2 and Cu content than the source of the main‐arc and rear‐arc samples. The main‐arc and rear‐arc mantles were metasomatized by both slab‐derived fluids and melts. Whereas release of high Cu‐SO 2 slab‐derived fluids caused oxidation and Cu enrichment of the forearc mantle. These systematics indicate a decrease in the f O 2 of slab fluxes with increasing depth‐to‐slab and distance‐from‐trench. Our findings highlight the role of ridge subduction in controlling the along‐arc and across‐arc variations in the chemistry of Vanuatu arc magmas. This updated geodynamic model, based on geochemistry, is consistent with recent geophysical constraints and 3D numerical modeling.
Forearc
Slab
Slab window
Island arc
Cite
Citations (6)
Abstract Many lines of evidence from high P–T experiments, thermodynamic models, and natural observations suggest that slab-derived aqueous fluids, which flux mantle wedges contain variable amounts of dissolved carbon. However, constraints on the effects of H2O–CO2 fluids on mantle melting, particularly at mantle wedge P–T conditions, are limited. Here, we present new piston cylinder experiments on fertile and depleted peridotite compositions with 3.5 wt.% H2O and XCO2 [= molar CO2 / (CO2 + H2O)] of 0.04–0.17. Experiments were performed at 2–3 GPa and 1350°C to assess how temperature, peridotite fertility, and XCO2 of slab-derived fluid affects partial melting in mantle wedges. All experiments produce olivine + orthopyroxene +7 to 41 wt.% partial melt. Our new data, along with previous lower temperature data, show that as mantle wedge temperature increases, primary melts become richer in SiO2, FeO*, and MgO and poorer CaO, Al2O3, and alkalis when influenced by H2O–CO2 fluids. At constant P–T and bulk H2O content, the extent of melting in the mantle wedge is largely controlled by peridotite fertility and XCO2 of slab-fluid. High XCO2 depleted compositions generate ~7 wt.% melt, whereas, at identical P–T, low XCO2 fertile compositions generate ~30 to 40 wt.% melt. Additionally, peridotite fertility and XCO2 have significant effects on peridotite partial melt compositions. At a constant P–T–XCO2, fertile peridotites generate melts richer in CaO and Al2O3 and poorer in SiO2, MgO + FeO, and alkalis. Similar to previous experimental studies, at a constant P–T fertility condition, as XCO2 increases, SiO2 and CaO of melts systematically decrease and increase, respectively. Such distinctive effects of oxidized form of dissolved carbon on peridotite partial melt compositions are not observed if the carbon-bearing fluid is reduced, such as CH4-bearing. Considering the large effect of XCO2 on melt SiO2 and CaO concentrations and the relatively oxidized nature of arc magmas, we compare the SiO2/CaO of our experimental melts and melts from previous peridotite + H2O ± CO2 studies to the SiO2/CaO systematics of primitive arc basalts and ultra-calcic, silica-undersaturated arc melt inclusions. From this comparison, we demonstrate that across most P–T–fertility conditions predicted for mantle wedges, partial melts from bulk compositions with XCO2 ≥ 0.11 have lower SiO2/CaO than all primitive arc melts found globally, even when correcting for olivine fractionation, whereas partial melts from bulk compositions with XCO2 = 0.04 overlap the lower end of the SiO2/CaO field defined by natural data. These results suggest that the upper XCO2 limit of slab-fluids influencing primary arc magma formation is 0.04 < XCO2 < 0.11, and this upper limit is likely to apply globally. Lastly, we show that the anomalous SiO2/CaO and CaO/Al2O3 signatures observed in ultra-calcic arc melt inclusions can be reproduced by partial melting of either CO2-bearing hydrous fertile and depleted peridotites with 0 < XCO2 < 0.11 at 2–3 GPa, or from nominally CO2-free hydrous fertile peridotites at P > 3 GPa.
Peridotite
Slab
Cite
Citations (4)
Abstract We present new whole-rock geochemical data from the Brooks Range ophiolite (BRO) together with new mineral chemistry data from the BRO, South Sandwich forearc, Izu-Bonin forearc, and Hess Deep. The analyses reveal that the Brooks Range ophiolite (BRO) was most likely created in a forearc setting. We show that this tectonic classification requires the Brookian orogeny to begin at ~163-169 Ma. The middle-Jurassic BRO contains abundant gabbros and other intrusive rocks that are geochemically similar to lithologies found in other forearc settings. Based on major, minor, and trace element geochemistry, we conclude that the BRO has clear signals of a subduction-related origin. High-precision olivine data from the BRO have a forearc signature, with possible geochemical input from a nearby arc. The Koyukuk terrane lies to the south of the Brooks Range; previous studies have concluded that the BRO is the forearc remnant of this arc-related terrane. These studies also conclude that collision between the Koyukuk Arc and the Arctic Alaska continental margin marks the beginning of the Brookian orogeny. Since the BRO is a forearc ophiolite, the collision between the Koyukuk Arc and the continental margin must have coincided with obduction of the BRO. Previously determined 40Ar/39Ar ages from the BRO’s metamorphic sole yield an obduction age of 163-169 Ma. Since the same collisional event that obducts the BRO also is responsible for the Brookian orogeny, we conclude that the BRO’s obduction age of ~163-169 Ma marks the beginning of this orogenic event.
Forearc
Obduction
Orogeny
Cite
Citations (1)
Forearc
Wedge (geometry)
geodynamics
Cite
Citations (12)
Forearc
Mud volcano
Ultramafic rock
Seafloor Spreading
Accretionary wedge
Cite
Citations (30)