logo
    Abstract:
    The main aim of this study was to assess the presence of microplastics in the water and sediments of the Surakarta city river basin in Indonesia. In order to accurately reflect the river basin, a deliberate selection process was employed to choose three separate sampling locations and twelve sampling points. The results of the study revealed that fragments and fibers were the primary types of microplastics seen in both water and sediment samples. Furthermore, a considerable percentage of microplastics, comprising 53.8 % of the total, had dimensions below 1 mm. Moreover, the prevailing hues identified in the water samples were blue and black, comprising 45.1 % of the overall composition. In contrast, same color categories accounted for 23.3 % of the microplastics found in the soil samples. The analysis of microplastic polymers was carried out utilizing ATR-FTIR spectroscopy, which yielded the identification of various types including polystyrene, silicone polymer, polyester, and polyamide.
    Abstract A general method is proposed which measures the increase in uncertainty when sampling effort is reduced in sediment fingerprinting. The method gives quantitative measures of how reduced sampling of material in one of the source areas, and/or of suspended sediment in streams, increases the uncertainties in the proportions of sediment contributed from the sources. Because the proportions of sediment contributed by the source areas must add to one, standard errors of the estimated proportions cannot be used as the usual measures of uncertainty: the paper uses instead the volume of the joint 95% confidence region for the estimated proportions. The paper shows how the uncertainty in this volume changes as numbers of suspended sediment samples, and the numbers of samples collected from cropped fields, are reduced by successive steps from 24 ( 20 , in the case of cropped fields) to 16 , 12 , 8 , 4 and 2 samples. As expected, uncertainty increases rapidly as the number of samples – whether of suspended sediment or from cropped fields – is reduced drastically. The pattern of increasing uncertainty is similar both for reductions in suspended sediment sampling, and for reduced sampling from cropped areas. When the number of suspended sediment samples, and the number of samples from cropped fields, are reduced to the same values, the increase in uncertainty from fewer suspended sediment samples was always slightly greater than the increased uncertainty from the reduced sampling of cropped areas, although this finding took no account of differences in the costs of field sampling and laboratory analysis. Copyright © 2016 John Wiley & Sons, Ltd.
    Citations (8)
    Plastics are the most important component in marine debris. In turn, within plastics, microplastics (<5 mm) are those that most affect marine biota. Thus, this review has as its main objective to show the current state of studies of microplastics, as well as to determine the groups of vertebrates most affected by microplastics, and the type and predominant color of microplastics. For this research, we review a total of 132 articles, from 2010 to May of 2020. Our results show that the group more affected are turtles with 88% of the specimens contaminated by microplastics and median of 121.73 particles/individue. The predominant type is fibers (67.3%), polymer is polyethylene (27.3%), size is less than 2 mm (73.6%), and color is blue (32.9%).
    Biota
    Marine debris
    Plastic pollution