logo
    On the seafloor horizontal displacement from cGPS and compass data in the Campi Flegrei caldera
    3
    Citation
    9
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Seafloor deformation monitoring is now performed in the marine sector of the Campi Flegrei volcanic area. MEDUSA infrastructure consists of 4 buoys at depths of 40-96m equipped with cGPS receivers, accelerometers and magnetic compasses to monitor buoy status and a seafloor module with a bottom pressure recorder. We study the seafloor deformation in the caldera. Previously we show that cGPS onland network and MEDUSA timeseries for the years 2017-2020 are in agreement with the deformation predicted by a Mogi model describing the observed deformation of an active volcano. Only for buoy A data differ significantly from model, at 6.9sigma and 23.7sigma for the horizontal speed (v) and direction. We devised a new method to reconstruct the sea bottom displacement including cGPS and compass data. The method, applied to buoy A and validated also on C, uses compass data to correct cGPS positions accounting for pole inclination. Including systematic errors, the internal consistency, within 3sigma (2sigma) for the speed (angle), between the results derived for different maximum inclinations of the buoy pole up to 3.5deg shows that the method allows to significantly reduce the impact of the pole inclination which can alter the estimation. We find good convergence of the velocity and deformation angle for increasing values of the buoy pole inclination. We found v=3.521+-0.039(stat)+-0.352(syst)cm/yr and an angle -115.159+-0.670(stat)+-7.630(syst)deg. The relative impact of potential systematics (statistical) effects increases (decreases) with cutoff. Our analysis gives v consistent with Mogi at 5.2sigma(stat) or 0.5sigma(stat and syst), and a deformation angle consistent at 4.3sigma(stat) or at 0.3sigma. The module of the vectorial difference between v from the data and Mogi diminishes by a factor 7.65+-1.23(stat) or +-5.78(stat+syst) compared with previous work. Potential improvements are discussed.
    Keywords:
    Caldera
    Seafloor Spreading
    Compass
    Between March 1989 and March 1994, annual self-potential (SP) surveys were carried out on Izu-Oshima, a small volcanic island. A terrain-related SP distribution of about -1 mV per meter of elevation was observed outside the caldera in all five surveys. Inside the caldera, SP increases from about -350 mV to near 0 mV (relative to the coastline) as the summit crater is approached, although negative anomalies of small spatial extent are manifest. Self-potential inside the caldera decreased by about 100 mV between the March 1989 and the March 1990 surveys, which appears to be correlated with a significant decline in the degassing rate from the summit crater. After 1990, the SP distribution is quite steady along the entire survey line which extends from the west coast through the southern part of the caldera, and ends east of Ura-sabaku. Recently a postprocessor has been developed to calculate space/time distributions of electrokinetic potentials resulting from histories of underground conditions (pressure, temperature, salt concentration, flowrate etc.) computed by multiphase multi-component unsteady geothermal reservoir simulations (Ishido and Pritchett, 1996). We applied this postprocessor to a simple two-dimensional model of hydrothermal activity in a volcanic island. The low potentials in areas of high elevation are reproduced in the model, and are caused by downflow of meteoric waters. The high potential centered at the summit crater is found to be produced by upflows of volcanic gas and vapor which diminish meteoric water downflow near the volcanic conduit.
    Caldera
    Fumarole
    Citations (44)
    The Neapolitan volcanic area includes three active and high-risk volcanoes: Campi Flegrei caldera, Somma–Vesuvius, and Ischia island. The Campi Flegrei volcanic area is a typical example of a resurgent caldera, characterized by intense uplift periods followed by subsidence phases (bradyseism). After about 21 years of subsidence following the 1982–1984 unrest, a new inflation period started in 2005 and, with increasing rates over time, is ongoing. The overall uplift from 2005 to December 2019 is about 65 cm. This paper provides the history of the recent Campi Flegrei caldera unrest and an overview of the ground deformation patterns of the Somma–Vesuvius and Ischia volcanoes from continuous GPS observations. In the 2000–2019 time span, the GPS time series allowed the continuous and accurate tracking of ground and seafloor deformation of the whole volcanic area. With the aim of improving the research on volcano dynamics and hazard assessment, the full dataset of the GPS time series from the Neapolitan volcanic area from January 2000 to December 2019 is presented and made available to the scientific community.
    Caldera
    Unrest
    Volcanic hazards
    Seafloor Spreading
    Magma chamber
    Citations (58)
    Abstract The paper is divided into two parts. The development of ship-borne compasses is reviewed in Part I; in this section some of the difficulties due to bad siting, &c., are mentioned and certain solutions such as the use of repeating compasses and improved methods of correction are described. Part II surveys the development of the aircraft compass and shows how its phases of development have corresponded to those of the marine compass. Some recent forms of aircraft compass and methods of development are also described.
    Compass
    Section (typography)
    Citations (1)
    The Dolomieu caldera collapse (April 2007) was one of the most outstanding events of recent decades at Piton de la Fournaisevolcano. Forecasting such a destructive event is difficult but since then, the development of tools and monitoring networks has improved our knowledge of the dynamics of volcano instability. However, the precise location of volcano failure remains hard to constrain. Here, we show that reiteration of self-potential (SP) measurements along a profile prior to caldera collapse brings valuable insights on the most instable areas around the Dolomieu crater, revealing information not visible on one single SP acquisition. In particular, the SP dynamic highlights the presence of low cohesion/low strength materials at depth despite a lack of surface expression. Our data show that preferential failure area can be precisely identified at the meter scale, highlighting the relevance of SP reiteration as a tool for locating instabilities in both volcanic and non-volcanic environments.
    Caldera
    Cohesion (chemistry)
    Citations (6)
    The Bayonnaise knoll, an active submarine volcano belonging to an actively rifted part of the Izu-Bonin volcanic arc, exhibits hydrothermal ore deposits on its caldera floor in a region known as the Hakurei Sulfide Deposit (HSD) area. We observed the HSD area using high-resolution acoustic observation equipment consisting of multibeam echo sounder (MBES), sidescan sonar (SSS), and sub-bottom profiler (SBP) systems, on the AUV Urashima. We used visual and acoustic results to examine the consistency of the HSD area extent and to consider possibilities of other ore areas within the caldera. The resultant high-resolution acoustic imageries suggest expansion of the HSD area to the northeastern caldera wall and the southwestern sub-seafloor of the caldera floor. The SBP data show a thick sediment layer on the western part of the caldera floor where many high-backscattering signals were observed. Small chimney-like features were acoustically observed in the HSD area and also at the central cone and along the rim of the caldera. However, most are remnant features of ancient volcanic activity of the knoll, and thus may not indicate current hydrothermal deposits. Acoustic investigations such as this, along with appropriate interpretation, are very useful to determine the detailed distribution of ore on the seafloor and at the shallow subsurface, and should be an effective tool for regional site surveying before seabed mineral mining.
    Caldera
    Seafloor Spreading
    Seabed
    Citations (1)