logo
    Hydrothermal alteration of magmatic titanite: Implications for REE remobilization and the formation of ion-adsorption HREE deposits, South China
    6
    Citation
    39
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Ion-adsorption rare earth element (REE) deposits in South China are currently the main source of heavy rare earth elements (HREE). The Gucheng deposit in western Guangdong Province is one example of HREE mineralization hosted in weathered coarse-grained biotite granites (CGBG). Titanite is a common accessory mineral in the CGBG and contains significant amounts of total REE (31 621 to 38 431 ppm), especially HREE (18 906 to 22 249 ppm). Titanite with a U-Pb age of 102.6 ± 1.9 Ma in the CGBG crystallized under relatively high temperatures (722–798 °C), high fH2O, and high fO2 conditions in the late magmatic stage, and has similar Nd isotopic compositions similar to the host CGBG: 143Nd/144Nd = 0.512062 to 0.512125 and εNd(t) = –7.4 to –8.6. Backscattered electron (BSE) imaging and TESCAN integrated mineral analyzer (TIMA) measurements show that titanite in the CGBG has been altered partly to fergusonite-(Y), rutile, calcite, quartz, and fluorite. The hydrothermal fluid responsible for titanite alteration was enriched in CO32− and F, and was probably exsolved from the granitic magma. HREE released from the alteration of titanite were mostly scavenged by fergusonite-(Y) and rutile, which have been further replaced by gadolinite-(Y) and synchysite-(Ce). In addition, gadolinite-(Y) in the alteration assemblages exhibits further alteration and is characterized by elevated PO43− and SO42− contents in the altered parts. These results demonstrate that magmatic titanite in the CGBG underwent complex hydrothermal alteration, with a preferential accumulation of HREE in fergusonite-(Y) and gadolinite-(Y) in the alteration assemblages. Preferential HREE enrichments in magmatic titanite, and its alteration assemblages, are shown to play significant roles in the formation of the Gucheng HREE deposit.
    Keywords:
    Titanite
    Rutile
    Allanite
    Fluorite
    Rare-earth element
    Recent studies on albitite rocks located in the granodiorite complex of Central Sardinia have revealed that epidote has a widespread occurrence as a light rare-earth element (LREE)-bearing accessory common phase. Titanite has been recorded as a heavy rare earth element (HREE)-bearing mineral. The Hercynian granodiorite complex of Central Sardinia is composed chiefly of quartz, Ca-plagioclase, K-feldspar and biotite and of a wide variety of secondary assemblages, mainly allanite, titanite and zircon. Albitic plagioclase and quartz are the main mineral components of the albitites. Additional minerals include, besides allanite and epidote, a more calcic-plagioclase (oligoclase), K-feldspar, chlorite, titanite and more rarely muscovite. The mineral assemblages and REE-bearing minerals of albitites were analysed by wavelength dispersive spectrometry (WDS). Chemical data suggest that there is a near complete solid-solution between epidote and allanite whereas little variations in HREE of titanites were detected. In epidote-group minerals a pronounced zoning in REE was observed while titanite was recorded unzoned. Textural relations were studied by SEM to distinguish primary from secondary epidotes. Chemical criteria to recognize magmatic from alteration epidotes were also applied. The alteration epidotes mainly occur and generally originate from plagioclase alteration and from leaching of magmatic allanite. Comparison of textures using both the SEM technique and EPMA data showed that the characteristic 'patchy zoning', observed in epidotes, corresponds with different amounts of REE in these minerals. The schematic model proposed for the epidote-forming reactions during the metasomatic processes that affected the granodiorites involves: (i) the instability of the anorthitic component of plagioclase; (ii) the simultaneous formation of albite; (iii) the leaching of the magmatic allanite with a redistribution of REE in the epidotes of the albitites. KEYWOROS: rare earth elements, albitite rocks, Sardinia, epidote, allanite, titanite.
    Allanite
    Titanite
    Hornblende
    Muscovite
    Citations (0)
    The current study presents new mineralogical, geochemical and geochronological data for a pegmatite body hosted in gneisses and marbles from the vicinity of the Strashimir Pb-Zn vein deposit, Madan ore district, South Bulgaria. The mineral composition of the studied pegmatite is represented by oligoclase–andesine (An10.1–33.2) and albite (An0–7.6), which prevail over K-feldspar (Or87.9–92.4), and quartz. The established accessory minerals are allanite-(Ce), titanite, apatite and zircon. The pegmatite/marble contact is affected by later hydrothermal silicate-carbonate alteration without detected ore mineralization, despite the spatial proximity with the Strashimir Pb-Zn vein deposit. Epidote-group minerals in pegmatite are defined as members of the clinozoisite–epidote series. As a major constituent of the hydrothermal alteration zone, they are manifested in two well-distinguished generations along with chlorite, quartz and carbonates. The calculated temperature of chlorite mineralization yields T° of crystallization in the range of 223–266 °C. As a result of the hydrothermal fluid circulation, the accessory allanite-(Ce) is transformed to REE-rich epidote-clinozoisite, marked by depletion of REE and Fe and enrichment of Si, Al, and Ca. Due to the limited mobility of REE in fluids, after leaching these elements are incorporated in nearby crystallized epidotes. According to the occurrence, mineral association and chemical properties, three titanite populations are distinguished in the pegmatite. Two of them were in-situ dated by the LA-ICP-MS U-Pb method and reveal overlapping ages of 39.9±2.1 Ma and 39.5±2.2 Ma (39.3±1.2 Ma combining all titanite analyses). The ages are interpreted as titanite growth in a pegmatite body related to granitic melts in the Late Alpine high-metamorphic units (Madan Unit) of the Central Rhodopes. Hydrothermal fluids either did not affect the U-Pb isotope system of the titanites or were derived from the same fluid-rich melt.
    Pegmatite
    Titanite
    Allanite
    Citations (1)
    Abstract A study of the distribution of REE in epidote-bearing metaluminous granitoids from Sierra de Chepes, Sierras Pampeanas, Argentina, reveals that a large proportion of the REE reside in the accessory minerals (allanite, epidote, titanite, apatite and zircon), and therefore these minerals control the behaviour of REE in granitic magmas. Well-developed chemical zonation in titanite indicates that the REE content decreases in the melt during crystallization of this mineral. The textural and chemical characteristics of euhedral epidote suggest a magmatic origin, and in that case it may have played an important role in the fractionation of the REE . The amount of silica and any other geochemical parameter indicative of fractionation progress in the dominant granodioritic-tonalitic facies (gtf) do not correlate with observed variations in the REE patterns. When many accessory minerals are involved, as in the gtf, the differentiated melts (e.g. aplites) are REE poor. Thus, the presence/absence of accessory minerals in granitoids can be indicative of the generation of differentiated melt enriched or poor in REE and other trace elements. This may have an economic significance, as it may allow us to predict the probable geochemistry of the differentiated melts (i.e. those that tend to develop mineralization) from the textural analysis of the ‘regional’ granitic rock. Finally, the type and abundance of accessory minerals in the granitic suite can also help us to define the geotectonic environment where magmas were generated.
    Titanite
    Allanite
    Citations (32)
    The Fuerteventura carbonatites appear in the Complejo Basal as veins, breccias and shear bands in the coastline between Puerto de la Pena and Cueva de Lobos, and in the Esquinzo ravine zone. These carbonatites are formed by calcite mainly and apatite, aegirine-augite, albite, orthoclase-sanidine, biotite, epidote and ore minerals occur in lower amounts, and as accessory minerals titanite, zircon, garnet, celestite, barite, britholite, allanite, pyrochlore and monazite. Geochemical analysis of these carbonatites show high values of REE between 511 and 7,372 ppm, with high relation LREE/HREE. Microprobe studies show that these elements mainly are associated with phosphates (britholite, monazite and apatite), silicates (allanite and titanite), oxides (pyrochlore), carbonates (bastnaesite) and sulphates (barite). The carbonatites have been generated in the last magmatic-hydrothermal crystallization phases of the alkaline intrusive complexes of Fuerteventura.
    Allanite
    Titanite
    Carbonatite
    Aegirine
    Sanidine
    Citations (1)
    Hydrothermal experiments were performed on natural epidote and REE-bearing fluids as starting material to understand the formation of allanite from epidote. The experiments were performed at 30 to 100 MPa and at 250, 550 and 800 degrees C with a fluid containing 1000 mu g/g of each of the following elements: Y, La, Ce, Nd, Eu, Yb; and of 10 mu g/g of Th and U. At 550 degrees C, the only new mineral phase containing trivalent elements is located on grain boundaries and cracks of the starting epidote. Its composition corresponds to allanite. Except for the rim of the starting epidote no reaction is observed. At 800 degrees C the same reaction is observed at the rim of the former epidote. However, epidote is completely transformed to zoisite, clinopyroxene, spinel and garnet. The allanite seems to be formed by a solution-precipitation mechanism directly out of the trace element enriched fluid.
    Allanite
    Tourmaline
    Citations (0)
    Abstract Recent studies on albitite rocks located in the granodiorite complex of Central Sardinia have revealed that epidote has a widespread occurrence as a light rare-earth element ( LREE )-bearing accessory common phase. Titanite has been recorded as a heavy rare earth element ( HREE )-bearing mineral. The Hercynian granodiorite complex of Central Sardinia is composed chiefly of quartz, Ca-plagioclase, K-feldspar and biotite and of a wide variety of secondary assemblages, mainly allanite, titanite and zircon. Albitic plagioclase and quartz are the main mineral components of the albitites. Additional minerals include, besides allanite and epidote, a more calcic-plagioclase (oligoclase), K-feldspar, chlorite, titanite and more rarely muscovite. The mineral assemblages and REE -bearing minerals of albitites were analysed by wavelength dispersive spectrometry (WDS). Chemical data suggest that there is a near complete solid-solution between epidote and allanite whereas little variations in HREE of titanites were detected. In epidote-group minerals a pronounced zoning in REE was observed while titanite was recorded unzoned. Textural relations were studied by SEM to distinguish primary from secondary epidotes. Chemical criteria to recognize magmatic from alteration epidotes were also applied. The alteration epidotes mainly occur and generally originate from plagioclase alteration and from leaching of magmatic allanite. Comparison of textures using both the SEM technique and EPMA data showed that the characteristic ‘patchy zoning’, observed in epidotes, corresponds with different amounts of REE in these minerals. The schematic model proposed for the epidote-forming reactions during the metasomatic processes that affected the granodiorites involves: (i) the instability of the anorthitic component of plagioclase; (ii) the simultaneous formation of albite; (iii) the leaching of the magmatic allanite with a redistribution of REE in the epidotes of the albitites.
    Allanite
    Titanite
    Hornblende
    Muscovite