logo
    3D Sedimentary Architecture of Sandy Braided River, Based on Outcrop, Unmanned Aerial Vehicle and Ground Penetrating Radar Data
    9
    Citation
    42
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Ground Penetrating Radar (GPR) is a geophysical method that uses antennas to transmit and receive high-frequency electromagnetic waves to detect the properties and distribution of materials in media. In this paper, geological observation, UAV detection and GPR technology are combined to study the recent sediments of the Yungang braided river study area in Datong. The application of the GPR technique to the description of fluvial facies and reservoir architecture and the development of geological models are discussed. The process of GPR detection technology and application includes three parts: GPR data acquisition, data processing and integrated interpretation of GPR data. The geological surface at different depths and scales can be identified by using different combinations of frequencies and antenna configurations during acquisition. Based on outcrop observation and lithofacies analysis, the Yandong Member of the Middle Jurassic Yungang Formation in the Datong Basin has been identified as a typical sandy braided river sedimentary system. The sandy braided river sandbody changes rapidly laterally, and the spatial distribution and internal structure of the reservoir are very complex, which has a very important impact on the migration and distribution of oil and gas as a reservoir. It is very important to make clear the characteristics of each architectural unit of the fluvial sand body and quantitatively characterize them. The architectural elements of the braided river sedimentary reservoir in the Datong-Yungang area can be divided into three types: Channel unit, bar unit and overbank assemblages. The geological radar response characteristics of different types of sedimentary units are summarized and their interfaces are identified. The channel sediments form a lens-shaped wave reflection with a flat at the top and convex-down at the bottom in the radar profile, and the angles of the radar reflection directional axes are different on both sides of the sedimentary interface. In the radar profile, the deposit of the unit bar is an upward convex reflection structure. The overbank siltation shows a weak amplitude parallel reflection structure. The flood plain sediments are distributed continuously and stably in the radar profile, showing weak reflection characteristics. Different sedimentary units are identified by GPR data and combined with Unmanned Aerial Vehicle (UAV) detection data, and the establishment of the field outcrop geological model is completed. The development pattern of the diara is clarified, and the swing and migration of the channel in different stages are identified.
    Keywords:
    Ground-Penetrating Radar
    Outcrop
    I022 Characterisation of Fluvial Architectural Elements Using a Three Dimensional Outcrop Dataset – Escanilla Braided System R. Labourdette* (Total S.A. Geoscience Technologies) & R. Jones (Geospatial Research Ltd) SUMMARY EAGE 69 th Conference & Exhibition — London UK 11 - 14 June 2007 Introduction Braided fluvial reservoirs form some of the world’s giant oilfields and are found in many petroleum provinces. Braided fluvial architecture displays significant variability that has to be understood and quantified before it can be represented in reservoir models. In general the best constraint on 3-D geometry is provided by outcrops with irregular highly indented topography but
    Outcrop
    Keuper, Muschelkalk and Buntsandstein facies have been described in the External Zones of theBetic Cordillera. In many cases, however, Buntsandstein facies have been confused with Keuperfacies, because the stratigraphy of these outcrops is not continuous and because adequatedatings were not available for each detritic unit. To the extent that a number of pollen-baseddatings have been recently established, it can now be shown that most of these outcrops,previously considered Buntsandstein facies, are in fact Keuper facies.This paper defines the stratigraphy of the Triassic rocks which outcrop in the southeast ofCalasparra (Murcia). Information is also provided regarding an outcrop in which the Buntsandstein(in Rot facies) is located in a stratigraphical continuity with the Muschelkalk facies. Recentpollen-based datings have led to the conclusion that the Buntsandstein belongs to the Ladinianage, although the Anisian age may also be present in the lower part of this unit.
    Outcrop
    Citations (5)
    The sedimentary successions of the Belait formation exposed across the northern side of the Labuan Island has been studied by various workers such as Hazebroek, 1993; Levell, 1983, 1987; Tate, 1994. Based on his work, Mazlan Madon (1994, 1997) concluded that the basal Belait Formation was deposited in fluvial system developed over an eroded Temburong landscape in an overall transgressive regime. Facies development in the basal Belait reflects a quick change transition from fluvial systems (braided to meandering) to shallow marine successions represented by coarsening-upward offshore shales to shoreface sandstones. The presence of two (2) new outcrops provide the opportunity to further study the lateral continuity and vertical facies succession within the Belait Formation. A total of nine (9) outcrop sites including two (2) new locations were studied and logged and 142 samples were taken and analysed for biostratigraphic information. Results showed that the fluvial succession within the Belait Formation is not presence above the Temburong Formation at the new outcrop and replaced by coastal plain, fresh/brackish water estuarine successions. The fluvial succession thickened away from the new outcrop in the direction of Layang-layangan in the west and Tg. Kubong to the east. Furthermore, the fluvial succession in Tg. Kubong is also thinner than previously reported (Mazlan, 1994). Rapid change form fluvial to estuarine environment was observed based on biostratigraphic data. Interms of vertical facies development, we proposed that there are two (2) incised valleys developed where the fluvial succession was deposited and rapidly overlain by brackish water fluvial-estuarine deposits. The new outcrop area is interpreted as an interfluve and appears to be where the center of the anticline is located. The relatively thin fluvial to shallow marine transition above the sequence boundary, implying rapid deepening due to the steepening depositional surface, coupled with rising sea level and uplifting in the new outcrop area. This finding will help us in understanding the relationship between sea level, tectonic activity and vertical/laterar\l facies development.
    Outcrop
    Citations (0)
    Lateral profiling techniques have been utilised to define the three-dimensional fluvial architecture of the Fell Sandstone Group (Arundian-Holkerian) of the Northumberland Basin, UK; the Lee-type sandstones (Morrowan-Atokan) of the central Appalachian Basin, USA; the Mansfield and Brazil Formations (Morrowan-Atokan) of the Illinois Basin, USA; and the Anisian Hawkesbury Sandstone of the Sydney Basin, Australia. These strata are characterised by sandstones of braided fluvial origin. Individual fluvial channels are dominated by downstream accreting mesoforms and macroforms, interpreted to represent mid-channel and bank attached bars and dunes. Palaeocurrents are unimodal and of low variance. Evidence of low stage reworking is rare, indicating that the fluvial systems were perennial. Cross-stratified sandstones are interbedded with structureless sand bodies, which display three distinct geometric forms: Sms, Smc and Sme. The texture and composition of facies Sms, Smc and Sme are distinct from associated structured facies. Facies Sms forms erosively based sandsheets 250 m parallel and transverse to the flow. The upper surface is planar. Facies Smc forms elongate channels trending at high angles to the palaeoflow of fluvial channels. The sandbodies preserve a symmetrical cross-section with margins dipping 6 m thick, and may be traced >200 m parallel and transverse to flow direction. Amalgamation of the facies results in sandsheets >20m thick. Scours, elongate both parallel and oblique to fluvial flow are preserved along the basal surface. A classification scheme of massive sandstone facies has been developed. The facies are interpreted in terms of deposition from highly concentrated, laminar sediment/water flows. Sediment-laden currents were generated through primary and secondary mechanisms related to flooding and mass flow.
    Citations (1)
    detailed facies analysis is presented for the nanushuk formation in outcrop in the central north slope facies associations are interpreted and described simplified measured sections are presented along with detailed segments of measured sections to illustrate facies and facies association stacking patterns
    Outcrop
    Cenomanian
    Citations (5)
    The sedimentary successions of the Belait formation exposed across the northern side of the Labuan Island has been studied by various workers such as Hazebroek, 1993; Levell, 1983, 1987; Tate, 1994. Based on his work, Mazlan Madon (1994, 1997) concluded that the basal Belait Formation was deposited in fluvial system developed over an eroded Temburong landscape in an overall transgressive regime. Facies development in the basal Belait reflects a quick change transition from fluvial systems (braided to meandering) to shallow marine successions represented by coarsening-upward offshore shales to shoreface sandstones. The presence of two (2) new outcrops provide the opportunity to further study the lateral continuity and vertical facies succession within the Belait Formation. A total of nine (9) outcrop sites including two (2) new locations were studied and logged and 142 samples were taken and analysed for biostratigraphic information. Results showed that the fluvial succession within the Belait Formation is not presence above the Temburong Formation at the new outcrop and replaced by coastal plain, fresh/brackish water estuarine successions. The fluvial succession thickened away from the new outcrop in the direction of Layang-layangan in the west and Tg. Kubong to the east. Furthermore, the fluvial succession in Tg. Kubong is also thinner than previously reported (Mazlan, 1994). Rapid change form fluvial to estuarine environment was observed based on biostratigraphic data. Interms of vertical facies development, we proposed that there are two (2) incised valleys developed where the fluvial succession was deposited and rapidly overlain by brackish water fluvial-estuarine deposits. The new outcrop area is interpreted as an interfluve and appears to be where the center of the anticline is located. The relatively thin fluvial to shallow marine transition above the sequence boundary, implying rapid deepening due to the steepening depositional surface, coupled with rising sea level and uplifting in the new outcrop area. This finding will help us in understanding the relationship between sea level, tectonic activity and vertical/laterar\l facies development.
    Outcrop