logo
    Potential effect of wetting agents added to agricultural sprays on the stability of soil aggregates
    3
    Citation
    69
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract. A potential effect of adjuvants/wetting agents added to the spray mixture on the water stability of soil aggregates (WSA) in agricultural soil was studied. Nine sites were chosen in the Czech Republic. Each site was mapped using representative soil pits (depth min. 1.3 m). A total of 54 mixed samples were collected from topsoil horizons on the selected sites. The samples were exposed to the action of four different types of wetting agents (organosilicone wetting agent; methyl ester of rapeseed oil; mixture of methyl ester palmitic and oleic acids; isodecyl alcohol ethoxylate), which are the most common wetting agents used in agriculture in the Czech Republic. WSA was determined before and after the addition of wetting agents (WA). Initial WSA values were at the same level in a majority of sampling points. Two sites were an exception, on which Haplic Luvisols and Relictistagnic Fluvisols occurred. These soil types featured the lowest WSA values. After the addition of WA across the sampling points, average WSA values exhibited a demonstrable trend: WSA of control sample (without the WA application) was at all times higher than in samples with the addition of WA. If the measured WSA values are compared in terms of overall means, it is evident that the control variant always exhibited the highest WSA value (on average 44.04 %) and the variants with the application of WA showed always WSA values lower by min. 16 %. The worst effect on WSA was that of wetting agents whose basic component was methyl ester of rapeseed. These wetting agents caused a decrease in WSA by more than 50 %. All soil samples were also analysed for basic soil parameters (glomalin, oxidizable carbon – Cox, pH, Na, P, Ca, K, Mg) in order to determine their potential influence on aggregate stability and to possibly eliminate the negative impact of WA. In this respect, only a significant influence of Cox content on WSA was recorded, which positively correlated with the stability of soil aggregates.
    Keywords:
    Topsoil
    Coastal wetlands are considered important stores of blue carbon, containing some of the largest stores of pedologic and biotic carbon per unit area on the planet. These ecosystems are however highly sensitive to Climate Change and changes in the management practices. It is of utmost importance to address relevant ecosystem scales in order to fully understand carbon dynamics in coastal wetlands. In this regard, Unoccupied Aerial Vehicles (UAVs) can provide spatial scales detailed enough to address the fine scale patters of topsoil organic carbon accumulation in coastal wetlands. This study demonstrates the use of multispectral and photogrammetric data derived from UAVs to accurately map plant communities and topsoil organic carbon concentration in coastal wetlands. The overall accuracies from the classification of plant communities ranged from 88% to 97% whereas RMSE for topsoil organic carbon concentration ranged from 2.44% to 0.74%. By combining both models, site-specific variations in topsoil carbon concentrations among plant communities were unveiled. Open pioneer communities consistently showed the lowest topsoil organic carbon concentration, while the concentrations vary considerably across plant communities characterized by denser vegetation coverage. Furthermore, Sentinel-1 radar data was used to assess the spatial patterns of flood frequency. GAMs were used to combine flood frequency with the plant communities and topsoil organic carbon models, as well as an aboveground biomass (AGB) model from a previous study. GAMs revealed a stronger effect than flood frequency on topsoil organic carbon. Regarding flooding, increased flood frequency generally led decreased topsoil organic concentrations across communities and sites. However, the relative contribution of flood frequency to topsoil organic carbon concentration in Baltic coastal wetlands depends strongly on the location of the wetland and the nature of the floods. Higher flood frequencies could lead to increased topsoil organic carbon in wetlands subject to the input of estuarine sediments. Lastly, the integration of remote sensing platforms constitutes an effective tool for revealing spatial heterogeneity of carbon storage in coastal wetlands.
    Topsoil
    Soil carbon
    Based on the analysis of present topsoil construction technology, the maize field topsoil of Fuxin Daguben village was investigated in a bid to understand the typical soil structure characteristics of cultivated land in Liaoning Province. In light of the existing problems, such as the shallow cultivated land, the reduced the amount of effective topsoil, higher soil bulk density, the author proposes the development of a full range of topsoil compound operation with necessary equipment and reasonable soil layer fertilization and proper planting machines.
    Topsoil
    Citations (1)