U-Pb detrital zircon analysis of sedimentary rocks of the southeastern New England Avalon terrane in the U.S. Appalachians: Evidence for a separate crustal block
11
Citation
169
Reference
10
Related Paper
Citation Trend
Abstract:
ABSTRACT The Avalon terrane of southeastern New England is a composite terrane in which various crustal blocks may have different origins and/or tectonic histories. The northern part (west and north of Boston, Massachusetts) correlates well with Avalonian terranes in Newfoundland, Nova Scotia, and New Brunswick, Canada, based on rock types and ages, U-Pb detrital zircon signatures of metasedimentary rocks, and Sm-Nd isotope geochemistry data. In the south, fewer data exist, in part because of poorer rock exposure, and the origins and histories of the rocks are less well constrained. We conducted U-Pb laser ablation–inductively coupled plasma–mass spectrometry analysis on zircon from seven metasedimentary rock samples from multiple previously interpreted subterranes in order to constrain their origins. Two samples of Neoproterozoic Plainfield Formation quartzite from the previously interpreted Hope Valley subterrane in the southwestern part of the southeastern New England Avalon terrane and two from the Neoproterozoic Blackstone Group quartzite from the adjacent Esmond-Dedham subterrane to the east have Tonian youngest detrital zircon age populations. One sample of Cambrian North Attleboro Formation quartzite of the Esmond-Dedham subterrane yielded an Ediacaran youngest detrital zircon age population. Detrital zircon populations of all five samples include abundant Mesoproterozoic zircon and smaller Paleoproterozoic and Archean populations, and are similar to those of the northern part of the southeastern New England Avalon terrane and the Avalonian terranes in Canada. These are interpreted as having a Baltican/Amazonian affinity based primarily on published U-Pb and Lu-Hf detrital zircon data. Based on U-Pb detrital zircon data, there is no significant difference between the Hope Valley and Esmond-Dedham subterranes. Detrital zircon of two samples of the Price Neck and Newport Neck formations of the Neoproterozoic Newport Group in southern Rhode Island is characterized by large ca. 647–643 and ca. 745–733 Ma age populations and minor zircon up to ca. 3.1 Ga. This signature is most consistent with a northwest African affinity. The Newport Group may thus represent a subterrane, terrane, or other crustal block with a different origin and history than the southeastern New England Avalon terrane to the northwest. The boundary of this Newport Block may be restricted to the boundaries of the Newport Group, or it may extend as far north as Weymouth, Massachusetts, as far northwest as (but not including) the North Attleboro Formation quartzite and associated rocks in North Attleboro, Massachusetts, and as far west as Warwick, Rhode Island, where eastern exposures of the Blackstone Group quartzite exist. The Newport Block may have amalgamated with the Amazonian/Baltican part of the Avalon terrane prior to mid-Paleozoic amalgamation with Laurentia, or it may have arrived as a separate terrane after accretion of the Avalon terrane. Alternatively, it may have arrived during the formation of Pangea and been stranded after the breakup of Pangea, as has been proposed previously for rocks of the Georges Bank in offshore Massachusetts. If the latter is correct, then the boundary between the Newport Block and the southeastern New England Avalon terrane is the Pangean suture zone.Keywords:
Geochronology
As now known, the Archean and Proterozoic appear to have been different worlds: the geology (tectonic style, basinal distribution, dominant rock types), atmospheric composition (O2, CO21, CH4), and surface environment (day-length, solar luminosity, ambient temperature) all appear to have changed over time. And virtually all paleobiologic indicators can be interpreted as suggesting there were significant biotic differences as well: (1) Stromatolites older than 2.5 Ga are rare relative to those of the Proterozoic; their biotic components are largely unknown; and the biogenicity of those older than approx. 3.2 Ga has been questioned. (2) Bona fide microfossils older than approx. 2.4 Ga are rare, poorly preserved, and of uncertain biological relations. Gaps of hundreds of millions of years in the known record make it impossible to show that Archean microorganisms are definitely part of the 2.4 Ga-to-present evolutionary continuum. and (3) In rocks older than approx. 2.2 Ga, the sulfur isotopic record is subject to controversy; phylogenetically distinctive bio-markers are unknown; and nearly a score of geologic units contain organic carbon anomalously light isotopically (relative to that of the Proterozoic and Phanerozoic) that may reflect the presence of Archaeans (Archaebacteria of earlier classifications) but may not (since cellularly preserved Archean-age Archaeans have never been identified).
Geologic record
Acritarch
Cite
Citations (0)
Diachronous
Cite
Citations (38)
Cite
Citations (0)
Cite
Citations (9)
Cite
Citations (0)
Radiogenic nuclide
Indian Shield
Cite
Citations (47)
Supercontinent
Dharwar Craton
Cite
Citations (711)
A 1.5-2 m wide fine-grained undeformed acid dyke, cutting the Early Archaean Isua supracrustal succession, was found in 1978 (D.B., J.B.). Preliminary Rb-Sr isotope measurements (F.K.) of small hand samples suggested an unexpected mid-Proterozoic age. Additional material was collected in 1979 (J.B.). Owing to weight restrictions in the helicopter, some of the samples are smaller (100-500 g) than we would normally use, but we feel justified in presenting the results since they suggest Proterozoic granitic activity in the area, which has implications for the later history of the Archaean block.
Cite
Citations (16)
Most of central Africa is underlain by Archaean terrains (mostly below a Phanerozoic cover), represented by high-grade gneissic complexes and by low-grade granite-greenstone belts. The lowermost Proterozoic is represented either by gneisses in mobile zones or low-grade supracrustals in forelands. The remaining Lower Proterozoic is made of low-grade supracrustal metasediments in mobile zones. Such zones developed thus almost immediately after the end-Archaean cratonization. The successive mobile zones appear to have developed in a centrifugal pattern during the Lower-Proterozoic. The mineral wealth is unevenly distributed. Only some greenstone belts have given an appreciable gold output, whereas the gneissic Archaean terrains have proven to be almost barren. Iron remains an important resource of the Archaean, as manganese is for the Lower Proterozoic. Uranium and some Cu, Co has been found in the Lower Proterozoic of respectively Gabon and Uganda.
Cite
Citations (5)