Posidonia oceanica L. (Delile) meadows regression: Long-term affection may be induced by multiple impacts
Fabio Blanco-MurilloYolanda Fernández‐TorquemadaAurora Garrote-MorenoClaudio A. SáezJosé Luis Sánchez‐Lizaso
19
Citation
66
Reference
10
Related Paper
Citation Trend
Keywords:
Posidonia oceanica
MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 431:205-213 (2011) - DOI: https://doi.org/10.3354/meps09089 Fish herbivory leads to shifts in seagrass Posidonia oceanica investments in sexual reproduction S. Planes1,*, N. Raventos2,3, B. Ferrari1,4, T. Alcoverro2 1USR 3278, CNRS-EPHE, Centre de Biologie et d'Ecologie Tropicale et Méditerranéenne, Université de Perpignan, 66860 Perpignan Cedex, France 2Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), C/ Acceso a la Cala St. Francesc 14, 17300 Blanes, Girona, Spain 3Present address: ARGOMARIS Private Foundation, Port of Mataró, Local DC/5C, 08301 Mataró, Spain 4Present address: Agence des Aires Marines Protégées, Mission pour le parc marin de la Cote Vermeille, Passage du Vieux Port, BP 05, 66660 Port-Vendres, France *Email: planes@univ-perp.fr ABSTRACT: Although the dominant ecological paradigm considers herbivory to play an insignificant role in seagrass ecosystems, past herbivore densities were high enough to result in significant reduction of seagrass growth. To study the long-term impact of sustained and intense herbivory on seagrass meadows, we compared morphological, population and reproductive (flowering) parameters of Posidonia oceanica meadows inside a Marine Protected Area (MPA; where herbivore fish populations are very high) with unprotected meadows. In addition, we evaluated short-term seagrass responses by manipulating herbivore access to seagrass plots with caging experiments conducted inside the MPA. The density and individual sizes of the herbivorous fish Sarpa salpa were greater in the MPA, with a biomass 10 times higher than in unprotected areas. Fish bite marks on leaves were 50% more abundant inside the MPA. Shoot surface, rhizome sugar content and flower density were 80, 20 and 70% lower in the MPA, respectively, but shoot density was 30% higher in protected meadows than in unprotected meadows. The caging (fish exclusion) experiment generally corroborated these results, although the caging period was probably too short to produce changes in shoot density. P. oceanica responded to severe biomass removal by herbivores (80% of the photosynthetic biomass) and consequent reductions in carbon storage in the rhizome by reducing sexual reproduction (flowering intensity) and by gradually increasing clonal growth (increasing shoot density). This plasticity suggests an evolutionary adaptive mechanism to deal with historically high herbivore numbers and is evidence of the importance of herbivory as a controlling process in the structuring and functioning of seagrass meadows in the past. KEY WORDS: Herbivory · Seagrass · Posidonia oceanica · Mediterranean Sea · Sexual reproduction · Marine protected areas · Fish Full text in pdf format PreviousNextCite this article as: Planes S, Raventos N, Ferrari B, Alcoverro T (2011) Fish herbivory leads to shifts in seagrass Posidonia oceanica investments in sexual reproduction. Mar Ecol Prog Ser 431:205-213. https://doi.org/10.3354/meps09089 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 431. Online publication date: June 09, 2011 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2011 Inter-Research.
Posidonia oceanica
Cite
Citations (35)
Posidonia oceanica
Paracentrotus lividus
Epiphyte
Diplodus
Zostera marina
Cite
Citations (28)
在中国的 Seagrass 研究仍然在它的幼年期。尽管最近有进步,仍然有很多研究,需要获得 seagrass 的更好的理解。在这篇文章,我们从二个方面在中国在 seagrass 研究考察并且讨论进展:(1 ) seagrass 种类和他们的分发;(2 ) 在中国的 seagrass 研究包括他们的分类上的研究,生态学,光合作用,在水产业的应用,咸忍耐的机制和其它研究话题。属于 8 个类的 18 seagrass 种类的一个总数在中国(包括的香港和台湾) 在九个省和区域被散布,以及 Xisha 和 Nansha 群岛。他们能被划分成二个组:一个诺思中国组和一个华南组。基于 seagrass 分发,中国大陆海岸能被划分成三节:诺思中国 Seagrass 海岸,中间的中国 Seagrass 海岸,和华南 Seagrass 海岸。生态的研究在山东,广东, Guangxi,和海南的关键区域在 seagrass 社区,在 seagrass 生态系统骑车的营养素,基因差异,污染生态学和研究上包括研究。在关键区域的 Seagrass 种类和他们的地点,社区结构,生态的评估,附生植物,生态的功能和威胁也被总结。另外的研究集中了于 seagrass,中国的威胁的 seagrass 种类,和 Halophila ovalis 的花粉形态学的遥感。关键词 seagrass - seagrass 草地 - 海洋的生态系统 n ] Guangxi 科学基础(号码 0832030 ) 支持的中国, Guangxi 大学(2008 ) 的科学研究资金, UNDP/GEF/SCCBD 工程(SCCBD/CPR/02/31 ) 和 Guangxi 给实验室资金(号码 07109007 ) 调音
Cite
Citations (0)
Posidonia oceanica (Linnaeus) Delile 1813 is an endemic and the most widespread seagrass species of the
Mediterranean Sea. Seagrass meadows are one of the most productive ecosystems on Earth, providing habitat to
numerous organisms. Therefore, mapping of seagrass meadows is of crucial importance for conservation and
coastal management purposes. Here we present an integrated geographic information system approach with
SCUBA diving, providing a cost effective method to monitor seagrass beds at shallow coastal habitats. In this
case study P. oceanica meadows were mapped in Ufakdere region of Kaş (Antalya) coastal area between April
– September 2015. A total of 25000 m2
are were screened to create seagrass coverage maps. Results indicate that
P. oceanica meadows cover 21200 m2
and we estimated that 520 m2 of this area is highly damaged. This
integrated approach provided one of the most detailed small-scale Posidonia mapping in Turkey and this time
and cost effective methodology can be applied to any seagrass meadow with great ease to increase our knowledge
on this important habitat.
Posidonia oceanica
Scuba diving
Marine protected area
Marine ecosystem
Cite
Citations (1)
Since the seagrass Posidonia oceanica is highly sensitive to environmental changes, a monitoring of the physiognomy, phenology and lepidochronology of the meadows was conducted during 2015-2020 at Tremiti Islands Marine Protected Area (Adriatic Sea). The meadow resulted stressed where anthropogenic disturbances occurred, while the implementation of proper management measures proved to trigger the recovery of the habitat. Our results underlined the importance of P. oceanica as a biological indicator to monitor human activities at local scale.
Posidonia oceanica
Marine protected area
Potamogetonaceae
Marine habitats
Cite
Citations (7)
Seagrass meadows are vital coastal habitats that support a wide array of species and provide numerous ecosystem services. The area of seagrass meadow has declined significantly, at a rate of about 5% per year, since 1980. Emerging techniques for seagrass research has the potential to provide new insights to fill knowledge gaps and improve our understanding of seagrass ecological function and ecosystem services. This improved understanding will help us to inform policy makers about protection measures. Using Posidonia oceanica dominated habitats as a case study, this thesis assesses emerging techniques for mapping seagrass habitats, monitoring biodiversity with seagrass habitats and assessing microplastic pollution loads within seagrass sediments.
Kayak-borne down-scan sonar is shown to provide an accurate and cost-effective method for mapping the distribution of seagrass meadows. Sonar-derived data suggested current estimates of seagrass extent in the Aegean, based on analysis of satellite imagery, may contain considerable inaccuracies particularly in areas of complex bathymetry. It is suggested that kayak-borne sonar mapping can provide accurate reference data for larger scale satellite mapping, delivering benefits in terms of our ability to survey seagrass distribution and monitor temporal changes in extent and health.
Environmental DNA is proven to be an effective tool for the non invasive detection of, Pinna nobilis, a culturally important yet Critically Endangered bivalve species associated with P. oceanica habitats. The technique developed in this study is capable of detecting concentrations of DNA as low as 5.50 x 10-10 ng µl-1 from sea water samples. This technique can be used at different spatial scales dependent on the season, allowing eDNA to be a sensitive and precise tool in locating and identifying a key species inhabiting seagrass meadows.
A fine-scale analysis of microplastic distribution within the sediment under a seagrass meadow using recently developed Sediment Microplastic Isolation techniques, indicated that seagrass did not influence the deposition of microplastics to sediment at a semi isolated bay. Microplastics were recovered at relatively low densities across the entire study area. Analysis of sediment patterns suggested that most sediment input was from terrestrial sources immediately adjacent to the seagrass bed and, therefore, that seagrass beds that are closer to terrestrial sources of microplastic pollution are likely to show much greater microplastic loadings.
It is concluded that, emerging techniques such as down-scan sonar, eDNA and microplastic extraction can provide novel insights into the distribution and ecological functioning of seagrass habitats. These insights provide avenues for the development of existing monitoring methods and for conservation policies.
Posidonia oceanica
Marine habitats
Marine protected area
Marine ecosystem
Cite
Citations (0)