logo
    A review of the seismicity of the Cameroon Volcanic Line observed by two local seismic networks
    0
    Citation
    1
    Reference
    10
    Related Paper
    Abstract:
    Earth and Space Science Open Archive PosterOpen AccessYou are viewing the latest version by default [v1]A review of the seismicity of the Cameroon Volcanic Line observed by two local seismic networksAuthorsAmandaLoughiDSee all authors Amanda LoughiDCorresponding Author• Submitting AuthorDrexel UniversityiDhttps://orcid.org/0000-0002-8860-1307view email addressThe email was not providedcopy email address
    Keywords:
    Line (geometry)
    The relationship between seismicity enhancement parameter W 1 and corresponding seismicity parameters, and their variation before some earthquakes about M S6.0 are analysed in this paper.The results show that there are three forms on enhancement of seismicity before moderate or strong earthquakes,the first is the enhancement on magnitude,the second is the temporal and spatial cluster of seismicity,the third appears as the first and the second forms concurrently.The variation of dynamic pattern of W 1 value before some earthquakes about M S6.0 shows that seismogenic process is an evolution process of interaction of many stress concentration zones.
    Variation (astronomy)
    Citations (0)
    In most cases of reservoir-induced seismicity, seismicity follows the impoundment, large lake-level changes, or filling at a later time above the highest water level achieved until then. We classify this as initial seismicity. This "initial seismicity" is ascribable to the coupled poroelastic response of the reservoir to initial filling or water level changes. It is characterized by an increase in seismicity above preimpoundment levels, large event(s), general stabilization and (usually) a lack of seismicity beneath the deepest part of the reservoir, widespread seismicity on the periphery, migrating outwards in one or more directions. With time, there is a decrease in both the number and magnitudes of earthquakes, with the seismicity returning to preimpoundment levels. However, after several years some reservoirs continue to be active; whereas, there is no seismicity at others. Preliminary results of two-dimensional (similar to those by Roeloffs, 1988) calculations suggest that, this "protracted seismicity" depends on the frequency and amplitude of lake-level changes, reservoir dimensions and hydromechanical properties of the substratum. Strength changes show delays with respect to lake-level changes. Longer period water level changes (~ 1 year) are more likely to cause deeper and larger earthquakes than short period water level changes. Earthquakes occur at reservoirs where the lake-level changes are comparable or a large fraction of the least depth of water. The seismicity is likely to be more widespread and deeper for a larger reservoir than for a smaller one. The induced seismicity is observed both beneath the deepest part of the reservoir and in the surrounding areas. The location of the seismicity is governed by the nature of faulting below and near the reservoir.
    Citations (43)