logo
    Hydrothermal alteration processes of fluorapatite and implications for REE remobilization and mineralization
    19
    Citation
    48
    Reference
    10
    Related Paper
    Citation Trend
    Apatite sensu lato, Ca 10 (PO 4 ) 6 (F,OH,Cl) 2 , is the tenth most abundant mineral on Earth, and is fundamentally important in geological processes, biological processes, medicine, dentistry, agriculture, environmental remediation, and material science. The steric interactions among anions in the [0,0, z ] anion column in apatite make it impossible to predict the column anion arrangements in solid solutions among the three end-members. In this work we report the measured atomic arrangements of synthetic apatite in the F-Cl apatite binary with nominal composition Ca 10 (PO 4 ) 6 (F 1 Cl 1 ), synthesized in vacuum at high temperature to minimize both hydroxyl- and oxy-component of the apatite. Four crystals from the high-temperature synthesis batch were prepared to assess the homogeneity of the batch and the precision of the location of small portions of an atom in the apatite anion column by single-crystal X-ray diffraction techniques. Crystals were ground to spheres of 80 μm diameter, and full-spheres of Mo K α diffraction data were collected to θ = 33o, with average redundancies >16. Final R 1 values ranged from 0.0145 to 0.0158; the lattice parameters ranged from a = 9.5084(2)–9.5104(3), c = 6.8289(3)–6.8311(2) A. Based on this study, solid solution in P 6 3 / m apatites along the F-Cl join is attained by creation of an off-mirror fluorine site at (0,0,0.167), a position wherein the fluorine atom relaxes away from its normal position within the {00 l } mirror plane in P 6 3 / m apatites; that relaxation is coupled with relaxation of a chlorine atom at the adjacent mirror plane away from the off-mirror fluorine, allowing acceptable F-Cl distances in the anion column. There are a total of four partially occupied anion positions in the anion column, including two for fluorine [(0,0,1/4) and (0,0,0.167)] and two for chlorine [(0,0,0.086) and (0,0,0)]; the chlorine site at the origin was previously postulated but not observed in calcium apatite solid solutions.
    Fluorapatite
    Citations (34)
    A series of synthetic apatite crystals along the fluorapatite-chlorapatite Ca5(PO4)3(F,Cl) join have been synthesized at 1220 to 1375 °C from Ca3(PO4)2 dissolved in a CaF2-CaCl2 melt. The solid solutions have then been characterized both chemically and structurally. Because of well-known difficulties in measuring the chemical composition of apatites containing F and Cl by electron microprobe a new semi-micro wet chemical method has been developed. Apatite is relatively well dissolved in mineral acids including HNO3. Nitric acid digestion of apatite for analysis of F and Cl has not been applied in the past to our knowledge. One reason is the potential risk of losing gaseous HF and HCl during acid decomposition. We present an analytical procedure that enables the analyses of F, Cl, Ca, P, and trace elements after digestion of 10 mg apatite with a small amount of 1 N HNO3 in gas-tight PTFE tubes at 80 °C. Analytical results from three independent closed acid digestions of 20 synthetic fluor-chlorapatites are presented. The reliability of this method was tested on the basis of charge balance, the Ca/P, Ca/(F+Cl), and P/(F+Cl) ratios, and the total cation sum. Independently derived Cl/F ratios by XRD using Rietveld refinement of apatite crystals from the same synthesis experiments are additionally presented.
    Fluorapatite
    Nitric acid
    Rietveld Refinement
    Citations (45)