Best-fit results from application of a thermo-rheological model for channelized lava flow to high spatial resolution morphological data
0
Citation
0
Reference
20
Related Paper
Keywords:
Channelized
Cite
Cite
Citations (0)
Shield volcano
Cite
Citations (0)
SUMMARY Lava domes form when highly viscous magmas erupt on the surface. Several types of lava dome morphology can be distinguished depending on the flow rate and the rheology of magma. Here, we develop a 2-D axisymmetric model of magma extrusion on the surface and lava dome evolution and analyse the dome morphology using a finite-volume method implemented in Ansys Fluent software. The magma/lava viscosity depends on the volume fraction of crystals and temperature. We show that the morphology of domes is influenced by two parameters: the characteristic time of crystal content growth (CCGT) and the discharge rate (DR). At smaller values of the CCGTs, that is, at rapid lava crystallization, obelisk-shaped structures develop at low DRs and pancake-shaped structures at high DRs; at longer CCGTs, lava domes feature lobe- to pancake-shaped structures. A thick carapace of about 70 per cent crystal content evolves at smaller CCGTs. We demonstrate that cooling does not play the essential role during a lava dome emplacement, because the thermal thickness of the evolving carapace remains small in comparison with the dome's height. A transition from the endogenic to exogenic regime of the lava dome growth occurs after a rapid increase in the DR. A strain-rate-dependent lava viscosity leads to a more confined dome, but the influence of this viscosity on the dome morphology is not well pronounced. The model results can be used in assessments of the rates of magma extrusion, the lava viscosity and the morphology of active lava domes..
Lava dome
Dome (geology)
Magma chamber
Cite
Citations (16)
Remote sensing thermal data of active lava flows allow the evaluation of effusion rates. This is made possible by a simple formula relating the lava effusion rate to the heat flux radiated per unit time from the surface of the flow. Due to the assumptions of the model, this formula implies that heat flux, surface temperature and lava temperature vary as a function of the flow thickness. These relationships, never verified or validated before, have been used by several authors as a proof of the weakness of the model. Here, multispectral infrared and visible imaging spectrometer (MIVIS) high spatial resolution (5–10 m) thermal data acquired during Etna's 2001 eruption were used to investigate downflow heat flux variations in the lava flow emitted from a vent located at 2100 m a.s.l. A high correlation between the downflow heat flux and the lava flow thickness (measured from a pre-existing digital elevation model) was found. Topography beneath the flow appears to play an important role both in lava emplacement mechanisms and flow dynamics. MIVIS-derived downflow effusion rates are consistent with the law of conservation of mass assessing the reliability of remote sensing techniques.
Cite
Citations (3)
Lava dome
Lava field
Shield volcano
Effusive eruption
Cite
Citations (31)