logo
    Genetic Link between Podiform Chromitites in the Mantle and Stratiform Chromitites in the Crust: A Hypothesis
    11
    Citation
    76
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    No genetic link between the two main types of chromitite, stratiform and podiform chromitites, has ever been discussed. These two types of chromitite have very different geological contexts; the stratiform one is a member of layered intrusions, representing fossil magma chambers, in the crust, and the podiform one forms pod-like bodies, representing fossil magma conduits, in the upper mantle. Chromite grains contain peculiar polymineralic inclusions derived from Na-bearing hydrous melts, whose features are so similar between the two types that they may form in a similar fashion. The origin of the chromite-hosted inclusions in chromitites has been controversial but left unclear. The chromite-hosted inclusions also characterize the products of the peridotite–melt reaction or melt-assisted partial melting, such as dunites, troctolites and even mantle harzburgites. I propose a common origin for the inclusion-bearing chromites, i.e., a reaction between the mantle peridotite and magma. Some of the chromite grains in the stratiform chromitite originally formed in the mantle through the peridotite–magma reaction, possibly as loose-packed young podiform chromitites, and were subsequently disintegrated and transported to a crustal magma chamber as suspended grains. It is noted, however, that the podiform chromitites left in the mantle beneath the layered intrusions are different from most of the podiform chromitites now exposed in the ophiolites.
    Keywords:
    Chromite
    Chromitite
    Peridotite
    The Voskhod podiform chromitite is one of more than 30 chromitite deposits that collectively form the Main Ore Field (MOF) within the Kempirsai Massif, in Kazakhstan. The MOF is the largest podiform chromitite ore-field in the world. The Voskhod deposit, encased in a serpentinised dunite halo, is situated within harzburgite units that comprise the mantle sequence of the Kempirsai ophiolite. This study arose from a unique opportunity to work on drill core samples through an un-mined podiform chromite deposit and investigate its internal structure, composition and genesis. The 18Mt ore-body has a strike of 600 m, is 170 m to 360 m wide and has an average thickness of 39 m. It has an immediate dunite halo between 1 m and 5 m thick. The ore body is made up of multiple stacked chromitite layers. Mineralised layers are separated by barren dunite or by weakly disseminated dunite lenses ranging from 5 – 45 m) units of massive chromite (>80% chromite), with progression towards the south west disseminated chromite (10 – 40% chromite) becomes increasingly abundant. Drill core logging and cross-section profiling of the internal structure of the ore body has identified an intricately connected network of what appear to be chromite-filled channel-ways. Outside of the halo the host rocks are inter-layered harzburgite and dunite. Accessory chromite in harzburgite has an average Cr# of 0.31 compared to Cr# 0.49 in the dunite. The harzburgites are depleted, having formed from intermediate degrees of partial melting (~15 – 18 %) of a fertile mantle source at a mid-ocean ridge (MOR) setting. The dunite units have transitional geochemical fingerprints that imply they formed from the interaction of MOR mantle harzburgite with both mid ocean ridge baslt-melt and an arc derived-melt. They are not the products of extremely high degrees of partial melting. The encasing dunite halo is extensively serpentinised (>80%). Chromite is only present as an accessory phase having an average Cr# of 0.62. The dunite has a geochemical signature indicating that it formed by reaction between residual harzburgite and a boninite melt in supra-subduction zone (SSZ) tectonic setting. A variety of geochemical fingerprints have been identified; residual MOR harzburgite, reacted-MOR dunite, reacted-SSZ dunite and harzburgite, indicating that the mantle section has had a ii polygenetic tectonic evolution, recording both ocean basin opening (MOR setting) and closing (SSZ setting) events. Trace element and REE whole rock geochemistry of the chromitites and associated host rocks provide evidence of depletion and a later-stage LREE-enrichment event. LREE-enrichment is most intense within and immediately adjacent to the chromitite. Chromites from the ore zone are at the Cr-rich extreme for podiform chromites (Cr# ave. 0.80-0.85) and are TiO2 poor (ave. 0.16 wt%), similar to chromite in boninite worldwide and nearby. Al/Ti ratios have been used to calculate the composition of the parent melts from which the Voskhod podiform chromitite crystallised: compositions that are synonymous with a boninite melt composition. Chemical variation in chromite is systematic and on a much smaller scale than was anticipated. Even variations in a single thin section provide key evidence for different magmatic processes. An apparent melt-rock reaction in harzburgite has been examined in freeze-frame. The chromite chemistry has been investigated at 50 cm, 1 cm and 1 mm scales. Compositional differences were identified on the basis of MgO% and FeO(t)% compositions. Diagrams FeO-Fe2O3 and Cr# - Mg# were used to demonstrate the variations and identify relationships. Broad cryptic layering on a 50 cm scale has been found as well as fine-cryptic layering on a 1 – 8 cm scale. The variations are interpreted to reflect differences in the mineral phases crystallised from the melt; periods when on chromite only crystallised are distinguished from periods when both chromite with olivine crystallised. It seems likely that the deposit is made up of thousands of episodes of chromite accumulation that formed in an intermittently replenished open-system. It also seems likely that the conduit was never a single melt-filled cavity; instead melt flow was focused through the mantle over an extended period. The conduit appears to be comprised of multiple branches, as chromite (± olivine) crystallised from the melt the channel-way became blocked and the melt was forced to deviate and make a new pathway through the mantle. As time elapsed the process resulted in the formation of stacked chromitite lenses, creating an orebody that has an internal arrangement of chromitite and dunite unites which resemble a stacked braided 'delta'.
    Chromitite
    Chromite
    Massif
    Anorthosite
    Citations (9)
    The Pozantı-Karsantı Ophiolite located in the middle Taurus has significant chromitite reserves in Turkey. The chromitite ore bodies belong to concordant and subconcordant form and are located within mantle harzburgite surrounded by bodies of dunite. Chromitite ore types are small or medium bodies of massive, disseminated, banded and nodular, also the result of a combination of at least two of these types of ores consist of mixed-type ore. Chromite ores bear traces of plastic deformation under the influence of lateral forces developing in the lateral direction. Plastic deformation is also observed at the micro scale. This study presents the concentrations of a complete suite of major (SiO2, Cr2O3, MgO, Al2O3, and FeO(t)) and trace elements (Ni, Ti, Co, V, Zn, S, Ca, Ga and Cl) in podiform chromitites of the Pozantı-Karsantı Ophiolite. According to the chromite ore whole-rock geochemical analysis, there was a positive relationship between the amount of Cr2O3 and Zn, V, Ti, and Co, while a negative relationship was found between Ni, S and Ca. This situation is opposite with the dunites in which the chromite ore is located.
    Chromitite
    Chromite
    Citations (0)
    ABSTRACT A fundamental difference exists between the textures of chromite crystals in chromitites in layered complexes and ophiolites. Those in layered complexes generally have euhedral octahedral shapes except where sintered, whereas those in ophiolites generally have rounded shapes accompanied commonly by nodular and more rarely dendritic chromite. Here we describe another texture characteristic of ophiolitic chromitite. The analysis of high-resolution X-ray computed tomography images of chromitite from Harold's Grave in the Shetland ophiolite has revealed 3D hopper structures on chromite grains. In 2D, these hopper structures appear at the surface of the chromite grain as stepped inward facing edges. A study of chromitites in 2D from ten ophiolite complexes has shown that all commonly contain chromite grains displaying these stepped edges. They occur mainly in protected enclaves surrounded by chromite grains that otherwise have rounded edges. The hopper crystals and the often associated clusters of inclusions represent periods of chromite crystal growth in a chromite supersaturated magma due to the presence of a more supercooled and more volatile-rich magma than that present in most layered complexes. Subsequent exposure of chromite crystals to chromite-undersaturated magma caused corrosion, resulting in the characteristic rounded shape of the ophiolitic chromite grains.
    Chromite
    Chromitite
    Citations (11)
    Abstract Ophiolitic rocks (chromitites and serpentinized peridotites) were petrologically examined in detail for the first time from Rayat, in the Iraqi part of the Zagros thrust zone, an ophiolitic belt. Almost all the primary silicates have been altered out, but chromian spinel has survived from alteration and gives information about the primary petrological characteristics. The protolith of the serpentinite was clinopyroxene‐free harzburgite with chromian spinel of intermediate Cr# (= Cr/[Cr + Al] atomic ratio) of 0.5 to 0.6. The harzburgite with that signature is the most common in the mantle section of the Tethyan ophiolites such as the Oman ophiolite, and is the most suitable host for chromitite genesis. Except for one sample, which has Cr# = 0.6 for spinel, the Cr# of spinel is high, around 0.7, in chromitite. The variation in Cr# of spinel in chromitite observed here has been also reported in the Oman ophiolite. The peridotite with chromitite pods exposed at Rayat was derived from an ophiolite similar in petrological character to the Oman ophiolite, one of the typical Tethyan ophiolites (fragments of Tethyan oceanic lithosphere). This result is consistent with the previous interpretation based on geological analysis.
    Chromitite
    Peridotite
    Protolith