logo
    Seismic full waveform inversion of wide-aperture seismic data using a trans-dimensional Bayesian method
    0
    Citation
    0
    Reference
    20
    Related Paper
    The determination of subsurface elastic property models is crucial in quantitative seismic data processing and interpretation. This problem is commonly solved by deterministic physical methods, such as tomography or full-waveform inversion. However, these methods are entirely local and require accurate initial models. Deep learning represents a plausible class of methods for seismic inversion, which may avoid some of the issues of purely descent-based approaches. However, any generic deep learning network capable of relating each elastic property cell value to each sample in a seismic data set would require a very large number of degrees of freedom. Two approaches might be taken to train such a network: first, by invoking a massive and exhaustive training data set and, second, by working to reduce the degrees of freedom by enforcing physical constraints on the model-data relationship. The second approach is referred to as “physics-guiding.” Based on recent progress in wave theory-designed (i.e., physics-based) networks, we have developed a hybrid network design, involving deterministic, physics-based modeling and data-driven deep learning components. From an optimization standpoint, a data-driven model misfit (i.e., standard deep learning) and now a physics-guided data residual (i.e., a wave propagation network) are simultaneously minimized during the training of the network. An experiment is carried out to analyze the trade-off between two types of losses. Synthetic velocity building is used to examine the potential of hybrid training. Comparisons demonstrate that, given the same training data set, the hybrid-trained network outperforms the traditional fully data-driven network. In addition, we perform a comprehensive error analysis to quantitatively compare the fully data-driven and hybrid physics-guided approaches. The network is applied to the SEG salt model data, and the uncertainty is analyzed, to further examine the benefits of hybrid training.
    Synthetic data
    Citations (95)
    We propose a new method to tackle the mapping challenge from time-series data to spatial image in the field of seismic exploration, i.e., reconstructing the velocity model directly from seismic data by deep neural networks (DNNs). The conventional way of addressing this ill-posed inversion problem is through iterative algorithms, which suffer from poor nonlinear mapping and strong nonuniqueness. Other attempts may either import human intervention errors or underuse seismic data. The challenge for DNNs mainly lies in the weak spatial correspondence, the uncertain reflection-reception relationship between seismic data and velocity model, as well as the time-varying property of seismic data. To tackle these challenges, we propose end-to-end seismic inversion networks (SeisInvNets) with novel components to make the best use of all seismic data. Specifically, we start with every seismic trace and enhance it with its neighborhood information, its observation setup, and the global context of its corresponding seismic profile. From the enhanced seismic traces, the spatially aligned feature maps can be learned and further concatenated to reconstruct a velocity model. In general, we let every seismic trace contribute to the reconstruction of the whole velocity model by finding spatial correspondence. The proposed SeisInvNet consistently produces improvements over the baselines and achieves promising performance on our synthesized and proposed SeisInv data set according to various evaluation metrics. The inversion results are more consistent with the target from the aspects of velocity values, subsurface structures, and geological interfaces. Moreover, the mechanism and the generalization of the proposed method are discussed and verified. Nevertheless, the generalization of deep-learning-based inversion methods on real data is still challenging and considering physics may be one potential solution.
    Seismic Tomography
    Synthetic data
    Seismic trace
    Citations (130)
    Seismic velocity is one of the most important parameters used in seismic exploration. Accurate velocity models are the key prerequisites for reverse time migration and other high-resolution seismic imaging techniques. Such velocity information has traditionally been derived by tomography or full-waveform inversion (FWI), which are time consuming and computationally expensive, and they rely heavily on human interaction and quality control. We have investigated a novel method based on the supervised deep fully convolutional neural network for velocity-model building directly from raw seismograms. Unlike the conventional inversion method based on physical models, supervised deep-learning methods are based on big-data training rather than prior-knowledge assumptions. During the training stage, the network establishes a nonlinear projection from the multishot seismic data to the corresponding velocity models. During the prediction stage, the trained network can be used to estimate the velocity models from the new input seismic data. One key characteristic of the deep-learning method is that it can automatically extract multilayer useful features without the need for human-curated activities and an initial velocity setup. The data-driven method usually requires more time during the training stage, and actual predictions take less time, with only seconds needed. Therefore, the computational time of geophysical inversions, including real-time inversions, can be dramatically reduced once a good generalized network is built. By using numerical experiments on synthetic models, the promising performance of our proposed method is shown in comparison with conventional FWI even when the input data are in more realistic scenarios. We have also evaluated deep-learning methods, the training data set, the lack of low frequencies, and the advantages and disadvantages of our method.
    Seismogram
    Seismic Tomography
    Geophysical Imaging
    Model building
    Citations (434)
    Seismic full waveform inversion is a common technique that is used in the investigation of subsurface geology. Its classic implementation involves forward modeling of seismic wavefield based on a certain type of wave equation, which reflects the physics nature of subsurface seismic wavefield propagation. However, obtaining a good inversion result using traditional seismic waveform inversion methods usually comes with a high computational cost. Recently, with the emerging popularity of deep learning techniques in various computer vision tasks, deep neural network (DNN) has demonstrated an impressive ability in dealing with complex nonlinear problems, including seismic velocity inversion. Now, extensive efforts have been made in developing a DNN architecture to tackle the problem of seismic velocity inversion, and promising results have been achieved. However, due to the dependence of a labeled dataset, i.e., the barely accessible true velocity model corresponding to real seismic data, the current supervised deep learning inversion framework may suffer from limitations on generalization. One possible solution to mitigate this issue is to impose the governing physics into this kind of purely data-driven method. Thus, following the procedures of traditional seismic full waveform inversion, we propose a seismic waveform inversion network, namely SWINet, based on wave-equation-based forward modeling network cells. By treating the single-shot observation data and its corresponding shot position as training data pairs, the inverted velocity model can be obtained as the trainable network parameters. Moreover, since the proposed seismic waveform inversion method is performed in a neural-network way, its implementation and inversion effect could benefit from some built-in tools in Pytorch, such as automatic differentiation, Adam optimizer and mini-batch strategy, etc. Numerical examples indicate that the SWINet method may possess great potential in resulting a good velocity inversion effect with relatively fast convergence and lower computation cost.
    Citations (58)