logo
    Hydrological responses in equatorial watersheds indicated by Principal Components Analysis (PCA) – study case in Atrato River Basin (Colombia)
    9
    Citation
    49
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    ABSTRACT The Atrato river basin is located in the Pacific fringe of Colombia, region with one of the highest precipitation rates in the world. The main purpose of this study is to determine the dominant processes in the hydrological responses along 17 sub-basins within the basin using principal component analysis. Watersheds located at the headwater presented a fast or medium response to the precipitation events, while higher flow homogeneity was observed in watersheds located at the lower portions of the basin. Three principal components were responsible for explaining 85.18% of the total variance. The component PC1 revealed the largest contributions for low flow behavior, being associated to precipitation, characteristic discharge values, compactness index, soil coverage and soil coarse textures. The component PC2 was assigned to the geological variables, fine and average texture soil and the average basin slope. Finally, the component PC3 has shown to be related to high flow patterns (maximum characteristic discharge values Q5 and Q1), igneous rocks and length of the basin. Highest specific discharge was associated to alluvial deposits and forest cover, whereas the slope was considered determinant for the run-off generation.
    Keywords:
    Stream flow
    Soil texture
    Streamflow data are important for river management and the calibration of hydrological models. However, such data are only available for gauged catchments. Citizen science offers an alternative data source, and can be used to estimate streamflow at ungauged sites. We evaluated the accuracy of crowdsourced streamflow estimates for 10 streams in Switzerland by asking citizens to estimate streamflow either directly, or based on the estimated width, depth and velocity of the stream. Additionally, we asked them to estimate the stream level class by comparing the current stream level with a picture that included a virtual staff gauge. To compare the different estimates, the stream level class estimates were converted into streamflow. The results indicate that stream level classes were estimated more accurately than streamflow, and more accurately represented high and low flow conditions. Based on this result, we suggest that citizen science projects focus on stream level class estimates instead of streamflow estimates.
    Stream flow
    This study investigates the capability of improving the distributed hydrological model performance by assimilating the streamflow observations. Incorrectly estimated model states will lead to discrepancies between the observed and estimated streamflow. Consequently, streamflow observations can be used to update the model states, and the improved model states will eventually benefit the streamflow predictions. This study tests this concept in upper Huai River basin. We assimilate the streamflow observations sequentially into the Soil and Water Assessment Tool (SWAT) using the ensemble Kalman filter (EnKF) to update the model states. Both synthetic experiments and real data application are used to demonstrate the benefit of this data assimilation scheme. The experiment shows that assimilating the streamflow observations at interior sites significantly improves the streamflow predictions for the whole basin. Assimilating the catchment outlet streamflow improves the streamflow predictions near the catchment outlet. In real data case, the estimated streamflow at the catchment outlet is significantly improved by assimilating the in situ streamflow measurements at interior gauges. Assimilating the in situ catchment outlet streamflow also improves the streamflow prediction of one interior location on the main reach. This may demonstrate that updating model states using streamflow observations can constrain the flux estimates in distributed hydrological modeling.
    Flood forecasting
    SWAT model
    Citations (17)