Pre-processing, group accretion, and the orbital trajectories of associated subhaloes
33
Citation
98
Reference
10
Related Paper
Citation Trend
Abstract:
We use a high-resolution cosmological dark matter-only simulation to study the orbital trajectories of haloes and subhaloes in the environs of isolated hosts. We carefully tally all apsis points and use them to distinguish haloes that are infalling for the first time from those that occupy more evolved orbits. We find that roughly 21 per cent of subhaloes within a host's virial radius are currently on first infall, and have not yet reached their first orbital pericentre; roughly 44 per cent are still approaching their first apocentre after infall. For the range of host masses studied, roughly half of all accreted systems were pre-processed prior to infall, and about 20 per cent were accreted in groups. We confirm that the entire population of accreted subhaloes -- often referred to as "associated" subhaloes -- extend far beyond the virial radii of their hosts, with roughly half currently residing at distances that exceed $\approx 1.2\times r_{200}$. Many of these backsplash haloes have gained orbital energy since infall, and occupy extreme orbits that carry them well past their initial turnaround radii. Such extreme orbits are created during the initial accretion and dissolution of loosely bound groups, but also through penetrating encounters between subhaloes on subsequent orbits. The same processes may also give rise to unexpectedly abrupt losses of orbital energy. These effects combine, giving rise to a large variation in the ratio of sequent apocentres for accreted systems. We find that, within 2 virial radii from host centres, the concentrations of first-infall halos are remarkably similar those of isolated field halos, whereas backsplash haloes, as well as systems that were pre-processed, are considerably more concentrated.Keywords:
Local Group
N-body simulations predict that CDM halo-assembly occurs in two phases: 1) a fast accretion phase with a rapidly deepening potential well; and 2) a slow accretion phase characterised by a gentle addition of mass to the outer halo with little change in the inner potential well. We demonstrate, using one-dimensional simulations, that this two-phase accretion leads to CDM halos of the NFW form and provides physical insight into the properties of the mass accretion history that influence the final profile. Assuming that the velocities of CDM particles are effectively isotropised by fluctuations in the gravitational potential during the fast accretion phase, we show that gravitational collapse in this phase leads to an inner profile rho(r) ~ r^{-1}. Slow accretion onto an established potential well leads to an outer profile with rho(r) ~ r^{-3}. The concentration of a halo is determined by the fraction of mass that is accreted during the fast accretion phase. Using an ensemble of realistic mass accretion histories, we show that the model predictions of the dependence of halo concentration on halo formation time, and hence the dependence of halo concentration on halo mass, and the distribution of halo concentrations all match those found in cosmological N-body simulations. Using a simple analytic model that captures much of the important physics we show that the inner r^{-1} profile of CDM halos is a natural result of hierarchical mass assembly with a initial phase of rapid accretion.
Gravitational potential
Mass fraction
Cold dark matter
Cite
Citations (112)
We assume that the Local Group of galaxies is an isolated collection of objects, of which only the Milky Way and M31 have dynamically significant masses. We further demanded that the galaxies in the Local Group emerged from near its barycenter at the Big Bang. This allows one to find the paths these objects have taken to reach their present positions. These positions are uncertain because the distances are not known, however, paths exist for only a limited range of present distances to the objects. We find what these ranges are as a function of the age of the Universe and the ratio of the Milky Way to M31 masses. Results for 21 objects are shown. These results can be compared to measurements to obtain limits on the age of the Universe and the mass ratio. The results for NGC 6822 show that the mass of the Milky Way is at least half that of M31. Further distance measurements are necessary to narrow the limits on the age, the most useful galaxy in this pursuit being IC 5152.
Local Group
Cite
Citations (17)
We have explored the outskirts of dark matter haloes out to 2.5 times the virial radius using a large sample of haloes drawn from Illustris, along with a set of zoom simulations (MUGS). Using these, we make a systematic exploration of the shape profile beyond Rvir. In the mean sphericity profile of Illustris haloes, we identify a dip close to the virial radius, which is robust across a broad range of masses and infall rates. The inner edge of this feature may be related to the virial radius and the outer edge with the splashback radius. Due to the high halo-to-halo variation, this result is visible only on average. However, in four individual haloes in the MUGS sample, a decrease in the sphericity and a subsequent recovery is evident close to the splashback radius. We find that this feature persists for several Gyr, growing with the halo. This feature appears at the interface between the spherical halo density distribution and the filamentary structure in the environment. The shape feature is strongest when there is a high rate of infall, implying that the effect is due to the mixing of accreting and virializing material. The filamentary velocity field becomes rapidly mixed in the halo region inside the virial radius, with the area between this and the splashback radius serving as the transition region. We also identify a long-lasting and smoothly evolving splashback region in the radial density gradient in many of the MUGS haloes.
Sphericity
Cite
Citations (7)