Monsoonal impact on circulation pathways in the Indian Ocean
17
Citation
34
Reference
10
Related Paper
Citation Trend
Keywords:
BENGAL
Eddy
Boundary current
Abstract. The circulation in the Atlantic Ocean is marked by the complex system of pathways of the Atlantic Meridional Overturning Circulation (AMOC). These currents change meridionally due to the interaction with nearby water masses. Hydrographic data provide the opportunity to characterize these currents for the whole water column with high-resolution data over the last thirty years. Moreover, inverse methods enable the quantification of absolute zonal transports across these sections, determining the strength of each current at a certain latitude in terms of mass, heat and freshwater, as well as their transport-weighted temperature and salinity. Generally, no changes can be found among decades for each of the currents in terms of transport or their properties. In the South Atlantic, the circulation describes the subtropical gyre affected by several recirculations. There are nearly 61 Sv entering from the Southern and Indian Oceans at 45° S. The South Atlantic subtropical gyre exports northward 17.0 ± 1.2 Sv and around 1 PW via the North Brazil Current and −55 Sv southward at 45° S into the Antarctic Circumpolar Current. In the north Atlantic, most of the transport is advected northward via the western boundary currents, which reduce in strength as they take part in convection processes in the subpolar North Atlantic, reflected also in the northward progress of mass and heat transport. Deep layers carry waters southward along the western boundary, maintaining similar values of mass and heat transport until the separation into an eastern branch crossing the mid-Atlantic ridge in the south Atlantic. Abyssal waters originating in the Southern Ocean distribute along the South Atlantic mainly through its western subbasin, flowing northward up to 24.5° N, subjected to an increasing trend in their temperature with time.
Boundary current
Antarctic Intermediate Water
Gulf Stream
Circumpolar star
Temperature salinity diagrams
Circulation (fluid dynamics)
Cite
Citations (0)
An idealized model is used to study the restratification of the Labrador Sea after deep convection, with emphasis on the role of boundary current eddies shed near the west coast of Greenland. The boundary current eddies carry warm, buoyant Irminger Current water into the Labrador Sea interior. For a realistic end-of-winter state, it is shown that these Irminger Current eddies are efficient in restratifying the convected water mass in the interior of the Labrador Sea. In addition, it is demonstrated that Irminger Current eddies can balance a significant portion of the atmospheric heat loss and thus play an important role for the watermass transformation in the Labrador Sea.
Eddy
Boundary current
Cite
Citations (120)
Abstract Marine heatwaves are known to cause severe ecosystem damage and therefore have received attention in recent years. However, the focus has tended to be on global (surface) studies, but not coastal waters. Cyclonic eddies are important and underappreciated components in the eddy-dominated western boundary current system, but their impacts on the path of the western boundary currents have largely been unexplored. Here we show that cold cyclonic eddies can modulate the most intense coastal marine heatwaves on record inshore of the East Australian Current. We show that the marine heatwave was driven and modulated by the lateral movement of the western boundary current jet and cyclonic eddies. This study reveals that the interplay of cyclonic eddies and a western boundary current can drive coastal ocean warming, paving the way for future investigations into eddy interactions and the evolution of coastal marine heatwaves in other western boundary current regions.
Boundary current
Eddy
Cite
Citations (12)
<p>The water masses exiting the Labrador Sea, and in particular the dense water mass formed by convection (i.e. Labrador Sea Water, LSW), are important components of the Atlantic Meridional Overturning Circulation (AMOC). Several studies have suggested that the eddy activity within the Labrador Sea is of high importance for the properties of the LSW and the export routes. In this study, the pathways and the associated timescales of the water masses exiting the Labrador Sea are investigated by using a Lagrangian particle tracking tool. This method is applied to two different model simulations: to an eddy- permitting idealized model able to reproduce the essential features of the Labrador Sea, and to a high-resolution global ocean model simulation under a repeated annual climatological forcing.</p><p>In both model configurations, the Lagrangian trajectories reveal that the water masses that exit the Labrador Sea have followed either a fast route within the boundary current or a slow route that involves extensive boundary current-interior exchanges. Regions characterized by enhanced eddy activity play a significant role in determining the properties and the timescales of the water masses exiting the marginal sea, as the interior-boundary current exchange is governed by eddy activity.</p><p>Analysis of the properties of the water masses along the different pathways shows that the water masses that pass through the interior experience stronger densification than those that follow the boundary current.</p><p>This study highlights the importance of the exchanges between the boundary current and the convection area in the interior in setting the properties of the water masses that leave the Labrador Sea and the associated timescales.</p>
Boundary current
Forcing (mathematics)
Eddy
Lagrangian particle tracking
Cite
Citations (0)
Abstract. The circulation in the Atlantic Ocean is marked by the complex system of pathways of the Atlantic Meridional Overturning Circulation (AMOC). These currents change meridionally due to the interaction with nearby water masses. Hydrographic data provide the opportunity to characterize these currents for the whole water column with high-resolution data over the last thirty years. Moreover, inverse methods enable the quantification of absolute zonal transports across these sections, determining the strength of each current at a certain latitude in terms of mass, heat and freshwater, as well as their transport-weighted temperature and salinity. Generally, no changes can be found among decades for each of the currents in terms of transport or their properties. In the South Atlantic, the circulation describes the subtropical gyre affected by several recirculations. There are nearly 61 Sv entering from the Southern and Indian Oceans at 45° S. The South Atlantic subtropical gyre exports northward 17.0 ± 1.2 Sv and around 1 PW via the North Brazil Current and −55 Sv southward at 45° S into the Antarctic Circumpolar Current. In the north Atlantic, most of the transport is advected northward via the western boundary currents, which reduce in strength as they take part in convection processes in the subpolar North Atlantic, reflected also in the northward progress of mass and heat transport. Deep layers carry waters southward along the western boundary, maintaining similar values of mass and heat transport until the separation into an eastern branch crossing the mid-Atlantic ridge in the south Atlantic. Abyssal waters originating in the Southern Ocean distribute along the South Atlantic mainly through its western subbasin, flowing northward up to 24.5° N, subjected to an increasing trend in their temperature with time.
Boundary current
Antarctic Intermediate Water
Gulf Stream
Temperature salinity diagrams
Circumpolar deep water
Circumpolar star
Cite
Citations (0)
Abstract Among Western Boundary Currents, the East Australian Current (EAC) has a more energetic eddy field relative to its mean flow, however, the relationship between upstream transport and downstream eddy kinetic energy (EKE) is still unclear. We investigate the modulation of downstream EKE in the EAC's typical separation region (Tasman EKE Box) (33. S–36. S) based on a long‐term (22‐year), high‐resolution (2.5–6 km) model simulation and satellite altimeter observations from 1994 to 2016. Our results show that the poleward EAC transport at S leads the EKE in the Tasman EKE Box by 93–118 days. Barotropic instabilities are the primary source of EKE, and they control EKE variability in the EAC system. Anticyclonic eddies shed from the EAC dominate from S– S during high‐EKE periods, but in low‐EKE periods anticyclonic eddies penetrate even further south by .
Eddy
Barotropic fluid
Boundary current
Anticyclone
Cite
Citations (57)
Abstract. The circulation in the Atlantic Ocean is marked by the complex system of pathways of the Atlantic Meridional Overturning Circulation (AMOC). These currents change meridionally due to the interaction with nearby water masses. Hydrographic data provide the opportunity to characterize these currents for the whole water column with high-resolution data over the last thirty years. Moreover, inverse methods enable the quantification of absolute zonal transports across these sections, determining the strength of each current at a certain latitude in terms of mass, heat and freshwater, as well as their transport-weighted temperature and salinity. Generally, no changes can be found among decades for each of the currents in terms of transport or their properties. In the South Atlantic, the circulation describes the subtropical gyre affected by several recirculations. There are nearly 61 Sv entering from the Southern and Indian Oceans at 45° S. The South Atlantic subtropical gyre exports northward 17.0 ± 1.2 Sv and around 1 PW via the North Brazil Current and −55 Sv southward at 45° S into the Antarctic Circumpolar Current. In the north Atlantic, most of the transport is advected northward via the western boundary currents, which reduce in strength as they take part in convection processes in the subpolar North Atlantic, reflected also in the northward progress of mass and heat transport. Deep layers carry waters southward along the western boundary, maintaining similar values of mass and heat transport until the separation into an eastern branch crossing the mid-Atlantic ridge in the south Atlantic. Abyssal waters originating in the Southern Ocean distribute along the South Atlantic mainly through its western subbasin, flowing northward up to 24.5° N, subjected to an increasing trend in their temperature with time.
Boundary current
Antarctic Intermediate Water
Gulf Stream
Temperature salinity diagrams
Circumpolar deep water
Circulation (fluid dynamics)
Cite
Citations (0)
Eddy
Barotropic fluid
Boundary current
Anticyclone
Isopycnal
Cite
Citations (20)
Abstract. The circulation in the Atlantic Ocean is marked by the complex system of pathways of the Atlantic Meridional Overturning Circulation (AMOC). These currents change meridionally due to the interaction with nearby water masses. Hydrographic data provide the opportunity to characterize these currents for the whole water column with high-resolution data over the last thirty years. Moreover, inverse methods enable the quantification of absolute zonal transports across these sections, determining the strength of each current at a certain latitude in terms of mass, heat and freshwater, as well as their transport-weighted temperature and salinity. Generally, no changes can be found among decades for each of the currents in terms of transport or their properties. In the South Atlantic, the circulation describes the subtropical gyre affected by several recirculations. There are nearly 61 Sv entering from the Southern and Indian Oceans at 45° S. The South Atlantic subtropical gyre exports northward 17.0 ± 1.2 Sv and around 1 PW via the North Brazil Current and −55 Sv southward at 45° S into the Antarctic Circumpolar Current. In the north Atlantic, most of the transport is advected northward via the western boundary currents, which reduce in strength as they take part in convection processes in the subpolar North Atlantic, reflected also in the northward progress of mass and heat transport. Deep layers carry waters southward along the western boundary, maintaining similar values of mass and heat transport until the separation into an eastern branch crossing the mid-Atlantic ridge in the south Atlantic. Abyssal waters originating in the Southern Ocean distribute along the South Atlantic mainly through its western subbasin, flowing northward up to 24.5° N, subjected to an increasing trend in their temperature with time.
Boundary current
Antarctic Intermediate Water
Gulf Stream
Temperature salinity diagrams
Circumpolar star
Circumpolar deep water
Cite
Citations (0)