logo
    Molecular indicators of methane metabolisms at cold seeps along the United States Atlantic Margin
    8
    Citation
    93
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Anaerobic oxidation of methane (AOM) and the environmental conditions supporting AOM on continental margins is an essential component to global methane budgets. Diagnostic lipid biomarkers and their compound specific isotope analysis preserved in authigenic carbonates at cold seeps can serve as “fingerprints” to archaeal−bacterial consortia involved in AOM. However, despite the discovery of several hundreds of seeps along the United States Atlantic Margin (USAM), there are relatively few biomarker investigations of cold seep carbonates along this passive margin. A lipid biomarker, carbon isotope, and DNA marker gene study was therefore undertaken to determine the microbial origins of authigenic carbonates from two USAM seeps, Norfolk and the Baltimore Canyon seep fields. Results from this study capture a distinct archaeal lipid signature from putative methanotrophic archaea, including archaeol (I), sn-2-hydroxyarchaeol, 2,6,10,15,19-pentamethylicosane (PMI), and crocetane. The 13C-depleted AOM-related archaeal lipid samples (i.e., archaeol: −91.6‰, sn-2-hydroxyarchaeol: −129.2‰, PMI −92.8‰, and crocetane: −70.9‰) confirm the dominance of methane assimilation and isotope fractionation during AOM. These results are consistent with the detection of archaeal anaerobic methanotrophs (ANMEs) based on 16S rRNA gene sequencing. The Norfolk authigenic carbonate contained ANME-1a, -1b, 2a-2b, and 2c whereas only the ANME-2 clade was detected at Baltimore and present as the subclusters 2a-2b and -2b. The ANME-2d clade may also be present, particularly at the Baltimore seep site, given the high abundance of Candidatus Methanoperedens nitroreducens detected in the mcrA gene sequencing. The presence of terminally branched fatty acids, antesio- and iso-C15:0 components, as well as C16:1ω7 with δ13C values as low as −107.6‰, are indicative of sulfate-reducing bacteria (SRB) at the Norfolk seep site and supports syntrophy of SRB with methane-oxidizing archaea. In contrast, nitrate-driven AOM in syntrophy M. nitroreducens at the Baltimore seep site is consistent with elevated fatty acid δ13C values and lack of Deltaproteobacteria at the Baltimore seep site. Taken together, the range in lipid composition, distribution, and carbon isotopic composition observed at the Norfolk and Baltimore seep sites suggests AOM is performed by multiple archaea instead of a single species and may be paired with either or both nitrate- and sulfate-reduction. Given the heterogeneous nature of cold seep ecosystems, this study fills a critical spatial gap in our knowledge of AOM activity at two seep sites along a passive margin.
    Keywords:
    Authigenic
    Cold seep
    Thaumarchaeota
    Chemosynthesis
    Abstract Based on the previously developed deep‐sea hybrid Raman insertion probe for cold seeps, the in situ detection of a cold seep vent and geochemistry analysis of fluids in chemosynthetic communities were conducted at the Formosa Ridge in the northern South China Sea. Three different methods were used to measure the components of the fluids erupting from the cold seep vent. The in situ Raman spectra of the cold seep fluids indicated the presence of gaseous CH 4 , C 3 H 8 , and H 2 S. The results indicate that the gases at this site are of biogenic origin; however, the presence of C 3 H 8 suggests that thermogenic methane should not be excluded. The conclusion is also supported by the results of gas chromatography and stable carbon isotope analysis. More significantly, we found that the concentration of SO 4 2− decreases with increasing depth, while the concentrations of CH 4 and S 8 increase in fluids in chemosynthetic communities, but without H 2 S. This finding indicates that the methane is oxidized by sulfate and that elemental sulfur is formed. This process usually occurs in marine sediments as the anaerobic oxidation of methane. Overall, the findings in this work provide a new insight into the geochemical analysis of cold seep fluids and in situ evidence of the oxidation of methane in the chemosynthetic communities near cold seeps.
    Cold seep
    Chemosynthesis
    Petroleum seep
    Citations (29)
    Cold seep ecosystems are characterized by a dense accumulation of chemosynthetic communities that utilize the chemical energy contained in fluids. Due to various technical challenges, the direct monitoring of these communities and their activity shifts during the venting of cold seeps has not been achieved. In this study, an integrated in-situ long-term observation platform was used to monitor seep venting activity, associated gas hydrates, and chemosynthetic communities inhabiting the Formosa Ridge in the South China Sea. In-situ Raman spectral data obtained over 14 days revealed two periods during which cold seep venting formed gas hydrates, interspersed with periods of hydrate decomposition during non-active intervals. The methane concentration in the open seawater column near the cold seep vent fluctuated, with an average of 23.07 μM (variance 28.71 μM). Furthermore, the average coverage ratio of the dominant cold seep macrofauna Shinkaia crosnieri was 22.94 % (variance 0.11 %). We hypothesize that the methane concentrations and biological cover in chemosynthetic communities exhibit stability. This phenomenon may be related to the role of natural gas hydrate deposits as methane capacitors, as proposed by earth scientists.
    Chemosynthesis
    Cold seep
    Petroleum seep
    Clathrate hydrate