Geochemistry and petrogenesis of the Tsirub nephelinite intrusions, southern Namibia
2
Citation
55
Reference
10
Related Paper
Citation Trend
Keywords:
Amphibole
Primitive mantle
Carbonatite
Mantle plume
Petrogenesis
Trace element
Incompatible element
Carbonatite
Mantle plume
Large igneous province
Flood basalt
Ultramafic rock
Peridotite
Petrogenesis
Cite
Citations (34)
Mantle plume
Incompatible element
Melt inclusions
Trace element
Primitive mantle
Hotspot (geology)
Cite
Citations (12)
Abstract The widespread Emeishan igneous province in southwestern China comprises the Emeishan continental flood basalts (ECFB) and associated mafie-ultramafic intrusions. The ECFB have variable SiO2, ranging from 43.6 to 52.1 wt%, Al2O3 from 5.0 to 12.6 wt%, and total alkali (K2O + Na2O) from 0.7 to 6.5 wt%. These oxides exhibit negative correlations with MgO (5.4 - 23.1 wt%), implying fractional crystallization of olivine and clinopyroxene, which occur as phenocrysts in the rocks. Linear correlations between Zr, Nb, and La suggest that crustal contamination is not important. The primitive-mantle-normalized trace-element patterns show that the ECFB are enriched in high-field-strength trace elements, large-ion-lithophile elements, and light-rare-earth elements, similar to ocean-island basalt. Incompatible element ratios of the ECFB, such as Zr/Nb (7-10), Th/La (0.1-0.15), and Rb/Nb (0.9-1.7), differ from those of primitive mantle, N-MORB, and continental crust, but are similar to ocean-island basalts from an enriched mantle source (EM-1). However, the ECFB have isotopic ratios (143Nd/144Nd = 0.51229 -0.51276 and 87Sr/86Sr = 0.70480-0.70647) that imply that the ECFB were derived from a homogeneous, primitive lower mantle carried upward by a mantle plume. We propose that the original melts derived from the mantle plume were contaminated through interaction at shallower depth with an enriched lithospheric mantle. This model suggests that the lithospheric mantle beneath the ECFB was modified by subduction of an oceanic slab.
Flood basalt
Mantle plume
Large igneous province
Crustal recycling
Primitive mantle
Fractional crystallization (geology)
Incompatible element
Cite
Citations (165)
Hotspot (geology)
Mantle plume
Incompatible element
Primitive mantle
Cite
Citations (63)
Carbonatite
Mantle plume
Large igneous province
Cite
Citations (124)
Trace and major element compositions of mid-Proterozoic (1.20–1.16 Ga) basaltic lava flows and dikes from the Gardar Province (South Greenland) provide evidence for two geochemically distinct magma sources. Based on distinct features of incompatible trace element ratios, such as Th/Ta, Th/Tb, or Th/Hf, they differ by the composition of their mantle source and by their partial melting trends. One mantle source is compositionally transitional between mid-ocean ridge basalt (MORB)-type and ocean-island basalt (OIB)-type sources with relatively low Ta/Hf ratios (~0.2), moderate enrichment in light rare-earth elements (LREE), and slightly positive initial ε Nd values (+2). It can be attributed to either a lithospheric mantle source or a depleted astenospheric mantle plume component that has been enriched shortly prior to eruption. The other mantle source is characterized by high Ta/Hf ratios (~0.6), a more pronounced LREE enrichment, and initial ε Nd values around 0. Elevated Ce N /Yb N (7.0–9.8) and Tb N /Yb N ratios (1.6–1.8) of the rocks derived from this source indicate the presence of garnet during melting, suggesting melt generation at depths > 70 km. This mantle source has the geochemical characteristics of an OIB-type source and is interpreted as originating from a mantle plume. Samples from the slightly younger (1.14 Ga) Abitibi dike swarm (Superior Province, Canada), spatially connected to the Gardar Province, show very similar trace element characteristics and the same two distinct magma sources can be identified. The geochemical similarities between the magma sources in South Greenland and Canada support the idea of a genetic link between the two magmatic provinces. This link strengthens the idea that the system was a long-lived major intracontinental rift zone.
Mantle plume
Primitive mantle
Trace element
Incompatible element
Cite
Citations (11)
Carbonatite
Massif
Ultramafic rock
Mantle plume
Cite
Citations (30)
Mantle plume
Incompatible element
Primitive mantle
Hotspot (geology)
Petrogenesis
Metasomatism
Cite
Citations (80)