logo
    Geochemistry and detrital zircon records of the Ruyang-Luoyu groups, southern North China Craton: Provenance, crustal evolution and Paleo–Mesoproterozoic tectonic implications
    33
    Citation
    119
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Paleo- to Mesoproterozoic sedimentary rocks in the southern margin of the North China Craton (NCC) are represented by the Ruyang and Luoyu groups. We studied the sedimentary rocks from the Yunmengshan and Beidajian formations of the Ruyang Group and the Cuizhuang and Sanjiaotang formations of the Luoyu Group. Detrital zircon grains from these formations have U–Pb age populations of 3.64–3.31 ​Ga, 2.96–2.86 ​Ga, 2.72–2.59 ​Ga, 2.56–2.47 ​Ga, 2.45–2.0 ​Ga, 1.99–1.85 ​Ga and 1.84–1.65 ​Ga. The geochemical features of the sedimentary rocks suggest that some of the sediments were sourced from intermediate to felsic magmatic rocks. The age groups of the detrital zircon are roughly consistent with the tectono-thermal events in the southern margin of the NCC. The Hf isotopic compositions of detrital zircon from the sedimentary rocks in Ruyang and Luoyu groups suggest that significant crustal growth and reworking of the NCC took place during the Neoarchean and early- to mid-Paleoproterozoic, while crustal reworking at the Paleoarchean and late-Paleoproterozoic, and crustal growth at the Mesoarchean. We suggest the depositional times of the Ruyang Group and Luoyu Group are constrained to no older than 1.75–1.7 ​Ga and 1.7–1.65 ​Ga, respectively. Formation of late-Paleoproterozoic basins related to the strike slip and extrusion tectonics that cross-cut the NCC during the late Paleoproterozoic (<1.75 ​Ga), and the late Paleoproterozoic sedimentation once isochronous developed in the southern margin of the NCC through the Taihang region of the interior NCC and linked the Yanshan–Liaoxi regions of the northern NCC.
    Keywords:
    Felsic
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Citations (11)
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Along the >650 km long southern margin of the Karoo Basin in South Africa, we traversed four evenly spaced stratigraphic transects and collected 22 samples of volcanic, air-fall tuffs thought to be distal deposits derived from the Permian–Triassic Southern Gondwanan volcanic arc. We present 469 new U-Pb zircon ages determined by sensitive high-resolution ion microprobe reverse geometry (SHRIMP-RG) at the Stanford–USGS Microanalytical Center in order to constrain the maximum depositional ages for the southern Karoo Basin strata. Weighted means of these youngest coherent zircon populations were selected to maximize the number of analyses while minimizing the mean square weighted deviation (MSWD) to increase the robustness and decrease the influence of Pb-loss and inheritance in determining the maximum depositional age. Maximum depositional ages for the marine Ecca Group range from 250 to 274 Ma, whereas in the conformably overlying terrestrial Beaufort Group maximum depositional ages ranged from 257 to 452 Ma. Across the southern Karoo Basin, the Ecca Group tuffs produce maximum depositional ages that young upward; however, the Beaufort Group tuffs yield maximum depositional ages that are geochronologically out of sequence. Furthermore, maximum depositional ages of the Beaufort Group tuffs are consistently older than ash ages within the underlying marine strata. Our results are supported by previously published U-Pb tuff zircon geochronology in the Karoo Basin and demonstrate that the presence of out-of-sequence, older tuff ages are repeatable in Beaufort Group tuffs along the southern margin of the basin. We propose that tuffs in the Karoo Basin are correlative with tuffs in southern South America, and that the age spectra of these tuffs were influenced by magmatic crustal recycling. We use these data to highlight the complexity of U-Pb zircon datasets from tuffs, address the use of U-Pb zircon ages to provide absolute age controls, and discuss the implications of these new age controls on the Permian-Triassic Karoo strata.
    Geochronology