High fluxes of deep volatiles from ocean island volcanoes: Insights from El Hierro, Canary Islands
45
Citation
90
Reference
10
Related Paper
Citation Trend
Abstract:
Basaltic volcanism contributes significant fluxes of volatiles (CO2, H2O, S, F, Cl) to the Earth's surface environment. Quantifying volatile fluxes requires initial melt volatile concentrations to be determined, which can be accessed through crystal-hosted melt inclusions. However, melt inclusions in volatile-rich mafic alkaline basalts, such as those erupted at ocean islands, often trap partially degassed melts, meaning that magmatic volatile fluxes from these tectonic settings are often significantly underestimated. We have measured major, trace element and volatile concentrations in melt inclusions from a series of young (<20 ka) basanites from El Hierro, Canary Islands. Our melt inclusions show some of the highest CO2 (up to 3600 ppm) and S (up to 4290 ppm) concentrations measured in ocean island basalts to date, in agreement with data from the recent 2011–2012 eruption. Volatile enrichment is observed in melt inclusions with crystallisation-controlled major element compositions and highly variable trace element ratios such as La/Yb. We use volatile-trace element ratios to calculate original magmatic CO2 contents up to 4.2 wt%, which indicates at least 65% of the original CO2 was degassed prior to melt inclusion trapping. The trace element contents and ratios of El Hierro magmas are best reproduced by 1–8% partial melting of a garnet lherzolite mantle source. Our projected CO2 (200–680 ppm) and S (265–450 ppm) concentrations for the source are consistent with upper estimates for primitive mantle. However, El Hierro magmas have elevated F/Nd and F/Cl in comparison with melts from a primitive mantle, indicating that the mantle must also contain a component enriched in F and other volatiles, most probably recycled oceanic lithosphere. Our modelled original magmatic CO2 contents indicates that, per mass unit, volatile fluxes from El Hierro magmas are up to two orders of magnitude greater than from typical mid-ocean ridge basalts and 1.5–7 times greater than from recent Icelandic eruptions, indicating large variability in the primary volatile content of magmas formed in different geodynamic settings, or even within different ocean islands. Our results highlight the importance of characterising mantle heterogeneity in order to accurately constrain both short- and long-term magmatic volatile emissions and fluxes from ocean island volcanoes.Fluvial fans represent one of the dominant sedimentary systems at the active margins of non-marine foreland basins. The Puig-reig anticline at the north-eastern margin of the Ebro Foreland Basin (SE Pyrenees, Spain) exposes continuous outcrops of Late Eocene-Early Oligocene fluvial deposits, from proximal to medial fluvial fan environments. The proximal deposits are found in the north limb of the anticline, especially in the northwest zone. These deposits are characterised by conglomerates with minor interbedded sandstones, with thick and wide sheet-like geometries with unscoured or variably scoured basal surfaces. These are interpreted to be the deposits of unconfined flash floods and wide-shallow channel streams. The medial deposits, covering the rest of the anticline, consist of interbedded conglomerates, sandstones and claystones. These are interpreted to have been deposited from braided to meandering channel streams and overbank areas. Distal deposits are found towards the south, beyond the anticline, and are characterised by sandstone and clay deposits of terminal lobes and lacustrine deltas. This study assesses the impact of the primary depositional characteristics, diagenesis and deformation of the most heterolithic portion of the system, with implications for increasing our understanding of folded fluvial reservoirs. Diagenetic processes, mainly mechanical compaction and calcite cementation, resulted in overall low intergranular porosity, with limited relatively high porosity developed in sandstone lithofacies in the medial deposits. Deformation associated with thrusting and fold growth resulted in the formation of abundant fractures, with relatively high fracture intensities observed in sandstone lithofacies in the anticline crest. This study shows that post-depositional processes can both improve and diminish the reservoir potential of basin proximal fluvial deposits, through the development of fracture networks and by compaction-cementation. The comparison of the Puig-reig anticline with other similar settings worldwide indicates that foreland basin margin locations may be potential areas for effective reservoirs, even in the case of low intergranular porosity.
Anticline
Arenite
Syncline
Outcrop
Cite
Citations (10)
Accretionary wedge
Seafloor Spreading
Forearc
Convergent boundary
Thrust fault
Echelon formation
Lineament
Cite
Citations (68)
Metamorphic core complex
Lineation
Massif
Detachment fault
Transpression
Mylonite
Extensional tectonics
Cite
Citations (181)
Accretionary wedge
Thrust fault
Décollement
Cite
Citations (173)
Pennsylvanian foreland deformation associated with the Ouachita orogene reactivated a west-northwest-east-southeast Cambrian basement trend, the southern Oklahoma aulacogen, to form the Wichita uplift, southwest Oklahoma. The 30-km-wide subsurface Frontal fault zone separates the uplift from the Anadarko basin to the north. Horizontal shortening across this fault zone is estimated at 7-15 km (20-40%), vertical displacement totals 9-10 km from the uplift to the basin. Folds are mapped on an interformational scale within the Frontal fault zone, and on an intraformational scale (Cambro-Ordovician Arbuckle Group) in the Slick Hills, southwest Oklahoma. Additional shortening occurred along southwest dipping mountain flank thrusts and on bedding plane thrusts, respectively. Hanging wall blocks of major faults contain the shallow dipping limb and anticlinal hinge zone of the interformational scale folds. Oil and gas production is generally restricted to these anticlinal crests within Paleozoic rocks. Deep wells (> 6000 m) that have penetrated footwall imbricates of the mountain flank thrusts have drilled through steep-overturned beds and tight recumbent folds before passing through faults into a normal stratigraphic sequence. Basement thrust loading of the southern margin of the Anadarko basin controlled the trend (west-northwest-east-southeast) of the axis of maximum deposition within the basin during the Pennsylvanian.
Basement
Thrust fault
Cite
Citations (2)
Accretionary wedge
Anticline
Forearc
Mass wasting
Thrust fault
Seafloor Spreading
Cite
Citations (35)
Décollement
Accretionary wedge
Thrust fault
Trough (economics)
Anticline
Cite
Citations (49)
Sequence (biology)
Cite
Citations (0)
A strong correlation between the amplitude of volcanic tremor and the flux of SO2 has been found at Mount Etna volcano, Sicily, corresponding to enhanced volcanic activity in the period 1987–1995. We therefore suggest that tremors and SO2 emissions have a common physical origin linked to the magma dynamics of the volcano.
Mount
Cite
Citations (6)
Accretionary wedge
Forearc
Seafloor Spreading
Cite
Citations (45)