logo
    Representing the Connectivity of Upland Areas to Floodplains and Streams in SWAT+
    61
    Citation
    43
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract In recent years, watershed modelers have put increasing emphasis on capturing the interaction of landscape hydrologic processes instead of focusing on streamflow at the watershed outlet alone. Understanding the hydrologic connectivity between landscape elements is important to explain the hydrologic response of a watershed to rainfall events. The Soil and Water Assessment Tool+ (SWAT+) is a new version of SWAT with improved runoff routing capabilities. Subbasins may be divided into landscape units (LSUs), e.g., upland areas and floodplains, and flow can be routed between these LSUs. We ran three scenarios representing different extents of connectivity between uplands, floodplains, and streams. In the first and second scenarios, the ratio of channelized flow from the upland to the stream and sheet flow from the upland to the floodplain was 70/30 and 30/70, respectively, for all upland/floodplain pairs. In the third scenario, the ratio was calculated for each upland/floodplain pair based on the upland/floodplain area ratio. Results indicate differences in streamflow were small, but the relative importance of flow components and upland areas and floodplains as sources of surface runoff changed. Also, the soil moisture in the floodplains was impacted. The third scenario was found to provide more realistic results than the other two. A realistic representation of connectivity in watershed models has important implications for the identification of pollution sources and sinks.
    Keywords:
    Impervious surface
    SWAT model
    Flow routing
    Land use and management practice inputs to the Soil and Water Assessment Tool (SWAT) are critical for evaluating the impact of land use change and best management practices on soil erosion and water quality in watersheds. We developed an algorithm in this study to maximize the usage of land use and management records during the setup of SWAT for a small experimental watershed in New Brunswick, Canada. In the algorithm, hydrologic response units (HRUs) were delineated based on field boundaries and associated with long-term field records. The SWAT model was further calibrated and validated with respect to water flow and sediment and nutrient (nitrate and soluble phosphorus) loadings at the watershed outlet. As a comparison, a baseline version of SWAT was also set up using the conventional way of HRU delineation with limited information on land use and management practices. These two versions of SWAT were compared with respect to input and output resolution and prediction accuracy of monthly and annual water flow and sediment and nutrient loadings. Results show that the SWAT set up with the new method had much higher accuracies in generating annual areas of crops, fertilizer application, tillage operation, flow diversion terraces (FDT), and grassed waterways in the watershed. Compared with the SWAT set up with the conventional method, the SWAT set up with the new method improved the accuracy of predicting monthly sediment loading due to a better representation of FDT in the watershed, and it also successfully estimated the spatial impact of FDT on soil erosion across the watershed. However, there was no definite increase in simulation accuracy in monthly water flow and nutrient loadings with high spatial and temporal management inputs, though monthly nutrient loading simulations were sensitive to management configuration. The annual examination also showed comparable simulation accuracy on water flow and nutrient loadings between the two models. These results indicate that SWAT, although set up with limited land use and management information, is able to provide comparable simulations of water quantity and quality at the watershed outlet, as long as the estimated land use and management practice data can reasonably represent the average land use and management condition of the watershed over the target simulation period.
    SWAT model
    Watershed Management
    Citations (4)
    Hydrological models have long been used to study the interactions between land, surface and groundwater systems, and to predict and manage water quantity and quality. The soil and water assessment tool (SWAT), a widely used hydrological model, can simulate various ecohydrological processes on land and subsequently route the water quality constituents through surface and subsurface waters. So far, in-stream solute transport algorithms of the SWAT model have only been minimally revised, even though it has been acknowledged that an improvement of in-stream process representation can contribute to better model performance with respect to water quality. In this study, we aim to incorporate a new and improved solute transport model into the SWAT model framework. The new process-based model was developed using in-stream process equations from two well established models—the One-dimensional Transport with Inflow and Storage model and the Enhanced Stream Water Quality Model. The modified SWAT model (Mir-SWAT) was tested for water quality predictions in a study watershed in Germany. Compared to the standard SWAT model, Mir-SWAT improved dissolved oxygen (DO) predictions by removing extreme low values of DO (<6 mg/L) simulated by SWAT. Phosphate concentration peaks were reduced during high flows and a better match of daily predicted and measured values was attained using the Mir-SWAT model (R2 = 0.17, NSE = −0.65, RSR = 1.29 with SWAT; R2 = 0.28, NSE = −0.04, RSR = 1.02 with Mir-SWAT). In addition, Mir-SWAT performed better than the SWAT model in terms of Chlorophyll-a content particularly during winter months, improving the NSE and RSR for monthly average Chl-a by 74 and 42%, respectively. With the new model improvements, we aim to increase confidence in the stream solute transport component of the model, improve the understanding of nutrient dynamics in the stream, and to extend the applicability of SWAT for reach-scale analysis and management.
    SWAT model
    Citations (11)