logo
    Deltaic deposits indicative of a paleo-coastline at Aeolis Dorsa, Mars
    29
    Citation
    69
    Reference
    10
    Related Paper
    Citation Trend
    A high‐resolution study of 18 lunar craters, including both primary and distant secondary craters, shows that the secondary craters produce larger ejecta fragments at a given crater size than do the primary craters. The maximum boulder diameter ( B ) increases with crater size ( D ) according to the power law B = KD 2/3 ; for primary craters, when B and D are in meters, K is 0.29, whereas for secondary craters, we find that K is 0.46 (60% larger). Next we show that impact fracture theory predicts that secondary craters, because of their lower impact velocity, will produce larger ejecta fragments than primary craters. This result provides an opportunity for distinguishing between primary and secondary craters in high resolution planetary images. The ability to identify distant secondary craters will help constrain primary production rates of small craters and improve surface age determination of small areas based on small crater counts.
    Primary (astronomy)
    Lunar craters
    Citations (53)
    I022 Characterisation of Fluvial Architectural Elements Using a Three Dimensional Outcrop Dataset – Escanilla Braided System R. Labourdette* (Total S.A. Geoscience Technologies) & R. Jones (Geospatial Research Ltd) SUMMARY EAGE 69 th Conference & Exhibition — London UK 11 - 14 June 2007 Introduction Braided fluvial reservoirs form some of the world’s giant oilfields and are found in many petroleum provinces. Braided fluvial architecture displays significant variability that has to be understood and quantified before it can be represented in reservoir models. In general the best constraint on 3-D geometry is provided by outcrops with irregular highly indented topography but
    Outcrop
    The amount of obliteration suffered by Martian impact craters is quantified by comparing measurable attributes of the current crater shape to those values expected for a fresh crater of identical size. Crater diameters are measured from profiles obtained using photoclinometry across the structure. The relationship between the diameter of a fresh crater and a crater depth, floor width, rim height, central peak height, etc. was determined by empirical studies performed on fresh Martian impact craters. We utilized the changes in crater depth and rim height to judge the degree of obliteration suffered by Martian impact craters.
    Citations (0)
    The sedimentary successions of the Belait formation exposed across the northern side of the Labuan Island has been studied by various workers such as Hazebroek, 1993; Levell, 1983, 1987; Tate, 1994. Based on his work, Mazlan Madon (1994, 1997) concluded that the basal Belait Formation was deposited in fluvial system developed over an eroded Temburong landscape in an overall transgressive regime. Facies development in the basal Belait reflects a quick change transition from fluvial systems (braided to meandering) to shallow marine successions represented by coarsening-upward offshore shales to shoreface sandstones. The presence of two (2) new outcrops provide the opportunity to further study the lateral continuity and vertical facies succession within the Belait Formation. A total of nine (9) outcrop sites including two (2) new locations were studied and logged and 142 samples were taken and analysed for biostratigraphic information. Results showed that the fluvial succession within the Belait Formation is not presence above the Temburong Formation at the new outcrop and replaced by coastal plain, fresh/brackish water estuarine successions. The fluvial succession thickened away from the new outcrop in the direction of Layang-layangan in the west and Tg. Kubong to the east. Furthermore, the fluvial succession in Tg. Kubong is also thinner than previously reported (Mazlan, 1994). Rapid change form fluvial to estuarine environment was observed based on biostratigraphic data. Interms of vertical facies development, we proposed that there are two (2) incised valleys developed where the fluvial succession was deposited and rapidly overlain by brackish water fluvial-estuarine deposits. The new outcrop area is interpreted as an interfluve and appears to be where the center of the anticline is located. The relatively thin fluvial to shallow marine transition above the sequence boundary, implying rapid deepening due to the steepening depositional surface, coupled with rising sea level and uplifting in the new outcrop area. This finding will help us in understanding the relationship between sea level, tectonic activity and vertical/laterar\l facies development.
    Outcrop
    Citations (0)
    [1] Crater statistics are used across a wide variety of applications on planetary surfaces, one of the most notable being estimating relative and absolute ages of those surfaces. This requires an assumed cratering rate over time and that craters be randomly distributed. Secondary craters - craters that form from the ejecta of an impact event - belie this assumption by creating greater crater density in a local area at a single time, significantly affecting crater statistics. There has been substantial debate over the relative importance of secondary craters, and our findings in this Mars study indicate that these events can be very significant and cannot be ignored when age-dating surfaces. We have analyzed secondary crater fields found close to 24 primary craters on Mars. Among other findings such as terrain control over secondary crater field characteristics, we conclude that a single large impact event (>100 km) can significantly affect crater statistics at the ∼1–5-km-diameter level over a non-trivial fraction of a planetary surface (minimum secondary crater diameters examined were ∼0.9 km; the minimum primary crater diameter was ∼20 km). We also suggest a potential way to avoid significant contamination by the majority of secondary craters that occur close to the primary impact event without the need to manually classify every crater as primary or secondary. Our findings are specific to Mars, but further work may show the patterns are applicable to other solid bodies.
    Primary (astronomy)
    Citations (45)
    The sedimentary successions of the Belait formation exposed across the northern side of the Labuan Island has been studied by various workers such as Hazebroek, 1993; Levell, 1983, 1987; Tate, 1994. Based on his work, Mazlan Madon (1994, 1997) concluded that the basal Belait Formation was deposited in fluvial system developed over an eroded Temburong landscape in an overall transgressive regime. Facies development in the basal Belait reflects a quick change transition from fluvial systems (braided to meandering) to shallow marine successions represented by coarsening-upward offshore shales to shoreface sandstones. The presence of two (2) new outcrops provide the opportunity to further study the lateral continuity and vertical facies succession within the Belait Formation. A total of nine (9) outcrop sites including two (2) new locations were studied and logged and 142 samples were taken and analysed for biostratigraphic information. Results showed that the fluvial succession within the Belait Formation is not presence above the Temburong Formation at the new outcrop and replaced by coastal plain, fresh/brackish water estuarine successions. The fluvial succession thickened away from the new outcrop in the direction of Layang-layangan in the west and Tg. Kubong to the east. Furthermore, the fluvial succession in Tg. Kubong is also thinner than previously reported (Mazlan, 1994). Rapid change form fluvial to estuarine environment was observed based on biostratigraphic data. Interms of vertical facies development, we proposed that there are two (2) incised valleys developed where the fluvial succession was deposited and rapidly overlain by brackish water fluvial-estuarine deposits. The new outcrop area is interpreted as an interfluve and appears to be where the center of the anticline is located. The relatively thin fluvial to shallow marine transition above the sequence boundary, implying rapid deepening due to the steepening depositional surface, coupled with rising sea level and uplifting in the new outcrop area. This finding will help us in understanding the relationship between sea level, tectonic activity and vertical/laterar\l facies development.
    Outcrop