Geochemistry and Origin of the Neoproterozoic Natkusiak Flood Basalts and Related Franklin Sills, Victoria Island, Arctic Canada
18
Citation
158
Reference
10
Related Paper
Citation Trend
Abstract:
The Natkusiak continental flood basalts and Franklin sills of Victoria Island preserve an exceptional record of the ca. 716–723 Ma Franklin large igneous province and are synchronous with major climatic variations and breakup of the supercontinent Rodinia. The Natkusiak Formation basalts record an early phase of discontinuous rubbly flows (<100 m, low-Ti Type 1 magmas) overlain by a thicker series of extensive tholeiitic sheet flows (∼1100 m, high-Ti Type 2 magmas). Coeval intrusions hosted by underlying Shaler Supergroup sedimentary rocks are differentiated low-Ti Type 1 Franklin sills and doleritic high-Ti Type 2 sills, both of which show correlations in isotope plots with the northernmost basalts on Victoria Island. Whole-rock Pb-Sr-Nd-Hf isotopic compositions from 66 samples indicate that the earliest magmas (Type 1) had similar primary melt compositions (Fo90 olivine) to oceanic island basalts and incorporated up to 10% granitoid basement (initial εNd = –0·8 to –7, Nb/La = 0·42 to 0·67), a relatively weak continental signature compared to many other continental flood basalt provinces. Type 2 doleritic sills and the northern sheet flow basalts incorporated up to 5% granitoid (initial εNd = +0·9 to +5·5), consistent with a waning continental influence during maturation of the magmatic system. Radiogenic isotope ratios are not correlated with indices of fractional crystallisation, which indicates that the continental material was either dispersed within the melt source, or that the magmas were heterogeneously contaminated prior to differentiation. In the southwestern part of Victoria Island, Type 1 basalts show negligible continental influence (Nb/La = 0·81 to 0·94) and have unusually high initial εNd ratios (+4·4 to +11·8) that are decoupled from initial εHf (+0·8 to +11·1). These radiogenic εNd compositions persist throughout the southern volcanic stratigraphy and indicate involvement of a component with high time-integrated Sm/Nd that lacked correspondingly high Lu/Hf. We propose that the source region for the southwestern Natkusiak basalts and related sills included isotopically matured oceanic crust, which was recycled through the asthenospheric mantle into a laterally heterogeneous plume. The distinct trace element signatures of the southern and northern sources became attenuated with the onset of voluminous melting (corresponding to emplacement of the Type 2 doleritic sills and sheet flow basalts) and may reflect contributions from hydrous eclogitic material emplaced into the lithospheric mantle during the ca. 1·9 Ga Wopmay Orogeny. As both the northern and southern volcanic rocks exhibit contrasting isotopic signatures throughout the preserved stratigraphy, the magma plumbing system must have experienced limited lateral mixing and homogenisation, which allowed for the expression of distinct mantle source signatures in the high-level sills and basaltic lavas.Keywords:
Flood basalt
Sill
Rodinia
Large igneous province
Supercontinent
Continental Margin
Rodinia
Supercontinent
Protolith
Laurentia
Cite
Citations (19)
Rodinia
Supercontinent
Large igneous province
Laurentia
Mantle plume
Flood basalt
Baltica
Cite
Citations (44)
The Mutare–Fingeren dyke swarm: the enigma of the Kalahari Craton's exit from supercontinent Rodinia
Abstract The Rodinia supercontinent broke apart during the Neoproterozoic. Rodinia break-up is associated with widespread intraplate magmatism on many cratons, including the c. 720–719 Ma Franklin large igneous province (LIP) of Laurentia. Coeval magmatism has also been identified recently in Siberia and South China. This extensive magmatism terminates ∼1 myr before the onset of the Sturtian Snowball Earth. However, LIP-scale magmatism and global glaciation are probably related. U–Pb isotope dilution–thermal ionization mass spectrometry (ID-TIMS) baddeleyite dating herein identifies remnants of a new c. 724–712 Ma LIP on the eastern Kalahari Craton in southern Africa and East Antarctica: the combined Mutare–Fingeren Dyke Swarm. This dyke swarm occurs in northeastern Zimbabwe (Mutare Dyke Swarm) and western Dronning Maud Land (Fingeren Dyke Swarm). It has incompatible element-enriched mid-ocean ridge basalt-like geochemistry, suggesting an asthenospheric mantle source for the LIP. The Mutare–Fingeren LIP probably formed during rifting. This rifting would have occurred almost ∼100 myr earlier than previous estimates in eastern Kalahari. The placement of Kalahari against southeastern Laurentia in Rodinia is also questioned. Proposed alternatives, invoking linking terranes between Kalahari and southwestern Laurentia or close to northwestern Laurentia, also present challenges with no discernible resolution. Nevertheless, LIP-scale magmatism being responsible for the Sturtian Snowball Earth significantly increases.
Rodinia
Supercontinent
Laurentia
Large igneous province
Snowball Earth
Baltica
Cite
Citations (2)
Rodinia
Supercontinent
Cite
Citations (15)
Supercontinent
Rodinia
Petrogenesis
Sill
Large igneous province
Geochronology
Laurentia
Lithophile
Cite
Citations (35)
Mass extinction events are short-lived and characterized by catastrophic biosphere collapse and subsequent reorganization. Their abrupt nature necessitates a similarly short-lived trigger, and large igneous province magmatism is often implicated. However, large igneous provinces are long-lived compared to mass extinctions. Therefore, if large igneous provinces are an effective trigger, a subinterval of magmatism must be responsible for driving deleterious environmental effects. The onset of Earth's most severe extinction, the end-Permian, coincided with an abrupt change in the emplacement style of the contemporaneous Siberian Traps large igneous province, from dominantly flood lavas to sill intrusions. Here we identify the initial emplacement pulse of laterally extensive sills as the critical deadly interval. Heat from these sills exposed untapped volatile-fertile sediments to contact metamorphism, likely liberating the massive greenhouse gas volumes needed to drive extinction. These observations suggest that large igneous provinces characterized by sill complexes are more likely to trigger catastrophic global environmental change than their flood basalt- and/or dike-dominated counterparts.Although the mass end-Permian extinction is linked to large igneous provinces, its trigger remains unclear. Here, the authors propose that the abrupt change from flood lavas to sills resulted in the heating of sediments and led to the release of large-scale greenhouse gases to drive the end-Permian extinction.
Sill
Flood basalt
Large igneous province
Permian–Triassic extinction event
Extinction (optical mineralogy)
Cite
Citations (340)
Rodinia
Supercontinent
Flood basalt
Large igneous province
Mantle plume
Cite
Citations (67)
The work of Alfred Wegener against the theory of expanding Earth. A b s t r a c t. Wegener‘s Pangea comprised all the continents during Permian times, surrounded by the Panthalassa all-ocean, much wider than the recent Pacific. The process of widening of new oceans (Atlantic, Arctic and Indian) during the Pangea breakup should be simultaneous with the shrinking of the pra-Pacific. However, there is much evidence that there are close biogeographic links between continents surrounding the Pacific, and the perimeter of the ocean becomes larger. If the Pacific expands like the other oceans, the Earth expansion is inevitable. The plate-tectonic fundamentals of supercontinent reconstructions refer to the hypothesis of the cyclic evolution of continental plates and to the assumption that plate collisions result in amalgamation of successive supercontinents followed by their break-up. As the result, the term “supercontinental cycle” was introduced. Thus, the Pangea history becomes a sequence of different consecutive Pangeas. Two periods of Precambrian supercontinent amalgamation were distinguished based on the supercontinent cyclicity hypothesis, leading to the formation of Meso-Neoproterozoic Rodinia and the Early Proterozoic Pre-Rodinia supercontinent. Pre-Rodinia, Rodinia and Pangea were strikingly similar to one another. To explain this phenomenon, a process of self-organization of tectonic plates is invoked. On an expanding Earth, there was only one supercontinent – Pangea – composed of continental lithosphere surrounding the planet smaller than the present Earth. The break-up process of the supercontinent occurred only once during Earth‘s history. Earth expansion offers a reasonable solution to the main plate-tectonic paradox that the continents could have been repeatedly separated and returned to the same unique configuration.
Supercontinent
Rodinia
Cite
Citations (0)