logo
    Precursor role of winter sea-ice in the Labrador Sea for following-spring precipitation over southeastern North America and western Europe
    5
    Citation
    31
    Reference
    10
    Related Paper
    Citation Trend
    The internal structure of ice cores from western Ross Sea pack ice floes showed considerable diversity. Snow-ice formation made a small, but significant contribution to ice growth. Frazil ice was common and its growth clearly occurred during both the pancake cycle and deformation events. Congelation ice was also common, in both its crystallographically aligned and non-aligned varieties. Platelet ice was found in only one core next to the Drygalski Ice Tongue, an observation adding to the increasing evidence that this unusual ice type occurs primarily in coastal pack ice near ice tongues and ice shelves. The diverse internal structure of the floes indicates that sea ice development in the Ross Sea is as complex as that in the Weddell Sea and more complex than in the Arctic. The mean ice thickness at the ice core sites varied between 0.71 m and 1.52 m. The thinnest ice generally occurred in the outer pack ice zone. Regardless of latitude, the ice thickness data are further evidence that Antarctic sea ice is thinner than Arctic sea ice.
    Ice divide
    Fast ice
    Pancake ice
    Ice core
    Citations (46)
    Observations during February and March 1980 of structures in 66 separate floes in Weddell Sea pack ice show widespread occurrence of frazil ice in amounts not previously reported in sea ice of comparable age and thickness in the Arctic. It is estimated that as much as 50% of the total ice production in the Weddell Sea is generated as frazil. Average floe salinities also appear higher than those of their Arctic counterparts. Comparative studies of fast ice at 28 locations in McMurdo Sound show this ice to be composed almost entirely of congelation ice that exhibits crystalline textures and orientations that are similar to those observed in Arctic fast ice. However, average fast-ice salinities in McMurdo Sound are higher than those reported for Arctic fast ice of comparable age and thickness.
    Fast ice
    Pancake ice
    Ice divide
    Citations (51)
    Observations during February and March 1980 of structures in 66 separate floes in Weddell Sea pack ice show widespread occurrence of frazil ice in amounts not previously reported in sea ice of comparable age and thickness in the Arctic. It is estimated that as much as 50% of the total ice production in the Weddell Sea is generated as frazil. Average floe salinities also appear higher than those of their Arctic counterparts. Comparative studies of fast ice at 28 locations in McMurdo Sound show this ice to be composed almost entirely of congelation ice that exhibits crystalline textures and orientations that are similar to those observed in Arctic fast ice. However, average fast-ice salinities in McMurdo Sound are higher than those reported for Arctic fast ice of comparable age and thickness.
    Fast ice
    Pancake ice
    Ice divide
    Citations (96)
    Abstract Mean wintertime temperatures (December, January, February) recorded during the period 1905–2000 at 18 weather stations distributed across Egypt were analysed to reveal spatial and temporal patterns of long‐term trends. The relationship between winter atmospheric circulation indices and winter temperature in Egypt is examined using correlation analysis. The atmospheric circulation is represented by four indices: the well‐known El Niño–southern oscillation (ENSO), North Atlantic oscillation (NAO) index, East Atlantic–West Russia (EAWR) index, and East Atlantic (EA) index. Surface temperature is a stable climatic element whose coefficient of variation (COV) is lower during winter. A statistically significant relation between COV and latitude indicates that stations in the south, Upper Egypt, are more variable than stations in the north, Lower Egypt. Increasing and decreasing winter surface temperature trends were found. In general, wintertime temperature has increased (warming) at most stations. Decreasing trends (cooling) are observed mainly over Upper Egypt. The upward trends in mean winter temperature during the 1910s–30s, mid 1970s, and early 1980s–2000 and the downward trends during the 1940s and 1960s are prominent features of the temporal distributions. The warming period that occurred early in the century may be explained by changes in circulation. Striking upward trends are most remarkable during the last 20 years. This could be attributed not only to human activities, but also to atmospheric circulation changes. No detectable connection between Egypt temperature and either ENSO or EA index was found during winter. A statistically significant negative relationship between winter temperature and winter NAO index can be observed. The NAO index is more dominant in determining winter temperature than ENSO circulation. A significantly stronger negative relationship between temperature over Egypt and the winter EAWR index values is detected. Copyright © 2004 Royal Meteorological Society
    Atmospheric Circulation
    Surface air temperature
    Atmospheric temperature
    Circulation (fluid dynamics)
    Mean radiant temperature
    Citations (53)
    Arctic oscillation
    Atmospheric Circulation
    Arctic dipole anomaly
    Subarctic climate
    Atlantic Equatorial mode
    Citations (494)
    We report on studies of sea-ice texture conducted during a number of expeditions into the Weddell Sea. Sea ice in the Antarctic is dominated by granular ice of frazil origin in floes of all ages, in contrast to ice in the Arctic, which consists predominantly of columnar ice of congelation origin. The large fraction of granular ice in first-year sea ice is a result of the dominant ice-formation process in the advancing ice edge, the pancake cycle. The dominance of granular over columnar ice in second- and/or multi-year ice is a result of the large degree of deformational activity in the Southern Ocean.
    Pancake ice
    Fast ice
    Melt pond
    Citations (45)