logo
    Nature and origin of Triassic igneous activity in the Western Qinling Orogen: the Wenquan composite pluton example
    71
    Citation
    108
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    The Western Qinling has been acknowledged to witness superimposed orogeny including north subduction of Paleotethys ocean and collision between North China and South China blocks; however, the precise timing constraints on transition of tectonic regime are remaining enigmatic. The Wenquan composite batholith comprising five phases and mafic enclaves is an ideal example to unlock this puzzle. The host granitoids are felsic, metaluminous to peraluminous, and high-K calc-alkaline to shoshonitic suite with I-type affinity. The mafic enclaves, however, are intermediate, and high-K calc-alkaline to shoshonitic. Zircon ages of multiple phases indicate an episodic growth lasting nearly 30 million years ranging from 238, 228, 218 to 208 Ma, consistent to Triassic igneous activity recording a transition regime from a subduction setting to a syn-collision setting and a post-collision setting in Western Qinling. Lead isotopes of whole-rock and K-feldspar at Wenquan and Lu-Hf isotopes of zircons separated from biotite monzogranite porphyry, porphyritic monzogranite, monzogranite porphyry, and hosted mafic enclaves suggest that the heat and the hot mafic melt initiated by the break-off of the northward subducting South China block lithosphere triggered partial melting of the Mesoproterozoic subcontinental lithospheric mantle to produce mafic magmas, and the underplated mafic magmas caused partial melting of the shallow subducted Mesoproterozoic lower crust generating granitic magmas at Wenquan. Combined our field observations and petrology study with a holistic review on previous geochronological and geochemical data of Triassic granitoids throughout the Western Qinling, we in this contribution proposed that the Triassic igneous activity in the Western Qinling corresponding to superimposed orogeny evolved from the northward subduction of Palaeotethys ocean (250–235 Ma) through syn-collision (228–215 Ma) to post-collision (215–185 Ma) between the North China and South China blocks.
    Keywords:
    Underplating
    Batholith
    Felsic
    Porphyritic
    Orogeny
    Abstract The Ghansura Felsic Dome (GFD) occurring in the Bathani volcano-sedimentary sequence was intruded by mafic magma during its evolution leading to magma mixing. In addition to the mafic and felsic rocks, a porphyritic intermediate rock occurs in the GFD. The study of this rock may significantly contribute toward understanding the magmatic evolution of the Ghansura dome. The porphyritic rock preserves several textures indicating its hybrid nature, i.e. that it is a product of mafic-felsic magma mixing. Here, we aim to explain the origin of the intermediate rock with the help of textural features and mineral compositions. Monomineralic aggregates or glomerocrysts of plagioclase give the rock its characteristic porphyritic appearance. The fact that the plagioclase crystals constituting the glomerocrysts are joined along prominent euhedral crystal faces suggests the role of synneusis in the formation of the glomerocrysts. The compositions of the glomerocryst plagioclases are similar to those of plagioclases in the mafic rocks. The results from this study indicate that the porphyritic intermediate rock formed by the mixing of a crystal-rich mafic magma and a crystal-poor felsic melt.
    Felsic
    Porphyritic
    Igneous differentiation
    Magma chamber
    Citations (7)
    Abstract Granitoid rocks of Westland-—Nelson are classified into five geographically distinct batholiths and four suites. Each suite consists of rocks of similar petrographic and chemical characteristics (and probably similar age) which transgress the batholith boundaries. It is suggested that the terms Tuhua Formation and Tuhua Intrusive Group be abandoned, although Tuhua Orogeny is retained as a broad term for mid-Paleozoic orogenic events.
    Batholith
    Orogeny
    Abstract. The Cornubian Batholith comprises six major and several smaller bodies of S-type granite in southwestern England. These late-Variscan granites comprise two-mica granites, and much less abundant Li-mica granites that are restricted to one of the major bodies (St Austell) and smaller bodies. Some of these intrusive rocks are associated with major Sn mineralization. This paper is concerned with the geochemistry of the two-mica granites, which are felsic, strongly peraluminous, and have a high total alkali content and low Na:K. Rocks with very similar compositions to these granites occur elsewhere, including the Variscan granites of continental Europe, and in southeastern Australia. In detail all of the major plutons of this batholith have distinctive compositions, except for Bodmin Moor and Carnmenellis which cannot be discriminated from each other compositionally. A comparison with experimental data shows that the granites attained their major element composition under conditions of crystal-liquid equilibrium, with the final melt being saturated in H2O, at temperatures close to 770d̀C and pressures about 50 MPa. That temperature estimate is in good agreement with values obtained from zircon saturation thermometry. The specific minimum-temperature composition excludes the possibility of widespread transfer of elements during hydrothermal alteration. Minor elements that are relatively very abundant are Li, B, Cs and U, while F, Ga, Ge, Rb, Sn, Ta, W and Tl are quite abundant and P is high for felsic rocks. Sr, Ba, and the trace transition metals Sc to Zn, are low, but not as low as they commonly are in very felsic granites. These trace element abundances, and the EL2O-saturation, resulted from the fractional crystallization of a melt derived by the partial melting of feldspathic greywackes in the crust. The Cornubian granites have compositions very similar to the more felsic rocks of the Koetong Suite of southeastern Australia, where a full range of granites formed at the various stages of magmatic fractionation postulated for the Cornubian granites, can be observed. The operation of fractional crystallization in the Cornubian granites is confirmed by the high P abundances in the feldspars, with P contents of the plagioclase crystals correlating with Ab-con-tent Most of the granites represent solidified melt compositions but within the Dartmoor pluton there is a significant component of granites that are cumulative, shown by their higher Ca contents. The Cornubian plutons define areas of high heat flow, of a magnitude which requires that fractionated magmas were transported laterally from their sources and concentrated in the exposed plutons. The generation of these granite plutons therefore involved magmatic fractionation during the stages of partial melting, removal of unmelted material from that melt, and fractional crystallization. During the later stages of those processes, movement of those magmas occurred on a crustal scale.
    Batholith
    Felsic
    Incompatible element
    The granitic batholiths are divided into 2 instrusive sequences.They expose between Huajia mountain and Zhangjiachuan area,the eastest section of Qilian orogenic zone.The Ⅰ Period instrusive batholiths resulted from the volcanic arc evironment that was associated with ocean plates dive during Caledonia.It is calc-alklic in composition and changes in mineral components,the other resulted from superposition orogeny within land during Indosinian,it is high K-alklic in composition and changes in mineral constructures.The magmatism in the area was associated with the process that includes tectonic plates diving,collosure and superposition orogeny within land.
    Batholith
    Orogeny
    Denudation
    Citations (0)
    The Precambrian Cachoeirinha-Salgueiro Fold Belt (CSF) located in the western portion of the states of Pernambuco and Paraiba is intruded, in its northern portion, by several coarsely porphyritic potassic calc-alkalic .batholiths. These batholiths were syntectonicaly unplaced in relation to the Brasiliano cycle (=Pan-African) and are commonly associated with potassium diorites suggesting coexistence and mixing between felsic and mafic magmas. In the Itaporanga batholith three petrographic domains-were mapped. A hybrid zone characterized by intense mechanical mixing of granite to granodiorite and potassium diorite magmas is located towards the border of the batholith. A commingling zone where felsic porphyritic granite to granodiorite and potassium diorite rocks are individualized at outcrop scale is located towards the center of the batholith. Finally a felsic porphyritic fades occur in the hybrid zone. The intense mechanical mixing observed in the hybrid zone developed migmatite-like structures (stromatic and less frequently agmatic), pillov -like structures, mafic enclaves with irregular shape and cuspate contacts between mafic and felsic rocks, suggesting diffusion of chemical species across contact. Major and trace element plotted against SiO2 agree with a mixing model to explain the hybrid samples plotted at intermediate position between felsic and mafic rocks. Similarity among chemical analyses of amphiboles from potassium dioritic enclaves of the Itaporanga batholith and from the potassium diorite stock east of it suggest a common source for both magmas. This hypothesis is corroborated by similar REE patterns for potassium dioritic enclaves of the Itaporanga batholith and for the potassium diorite stock. The batholiths shows a well developed foliation which dips towards its core suggesting that the present level of exposure represents the root zone of a diapir, where intense interaction between felsic and mafic magmas took place.
    Batholith
    Porphyritic
    Diorite
    Felsic
    Citations (13)
    Evidence has been found that casts doubt on the long-held view that the Idaho batholith was emplaced essentially as a unit. This evidence indicates that the batholith is composed of discrete masses of granitic rock, some of which came to place under deep-seated conditions, others at much shallower depths. The deeply seated emplacements include two closely related, but separately formed, masses; the earlier evolved while deformative stresses associated with a major orogeny were still quite intense, the other evolved during the later, less intense stages. These masses probably had their roots in the same source. The granitic bodies introduced under less deep-seated conditions came from a younger, probably unrelated source. The older rocks of the batholith resemble and are tentatively correlated with the granitic rocks of Oregon and Washington, which were emplaced at the close of the Sierra Nevadan orogeny, hence near the end of Jurassic time. The younger rocks appear to be associated with Laramide structures and are believed to be a product of the Laramide orogeny of late Cretaceous time.
    Batholith
    Orogeny
    Citations (17)