Contrasting Tectonic Settings and Sulfur Contents of Magmas Associated with Cretaceous Porphyry Cu ± Mo ± Au and Intrusion-Related Iron Oxide Cu-Au Deposits in Northern Chile
91
Citation
122
Reference
10
Related Paper
Citation Trend
Abstract:
Porphyry Cu ± Mo ± Au and iron oxide copper-gold (IOCG) deposits share many similarities (e.g., Fe, Cu, and Au contents), but also have important differences (e.g., the predominance of sulfide minerals in porphyry deposits and iron oxides in IOCG deposits). Genetic comparisons are complicated by the broad definition of IOCG deposits; here we restrict our study to IOCG deposits that are related to igneous intrusive systems. In the Mesozoic Coastal Cordillera of northern Chile, both porphyry and IOCG deposits occur in close spatial and temporal proximity, offering the chance to examine what controls their different modes of formation. From detailed examination of the timing, geochemistry, and tectonic setting of associated igneous rocks, based on new and published data, we find that rocks associated with mid-Cretaceous IOCG deposits (~125–110 Ma) are largely indistinguishable from those associated with slightly earlier (>125 Ma) and later (<110 Ma) porphyry Cu ± Mo ± Au deposits. Magmas related to IOCG deposits were formed during a brief period of back-arc transtension in the mid-Cretaceous and are, on average, somewhat more mafic (dioritic), locally alkaline, and isotopically primitive compared to granodioritic magmas associated with porphyry deposits formed during normal contractional arc tectonics in the later Cretaceous. However, these compositional ranges overlap, and the differences are not clear enough to be diagnostic.
We measured the SO3 content of igneous apatite from selected samples of these rocks to test the hypothesis that the difference in sulfur content of the ore deposits was due to differences in sulfur content of the associated magmas. Early igneous apatite crystals occurring as inclusions in silicate phenocrysts from the Carmen de Andacollo porphyry Cu-Au deposit (Re-Os molybdenite ages of 103.9 ± 0.5 Ma, 103.6 ± 0.5 Ma) are significantly richer in S (0.25 ± 0.17 wt % SO3, n = 69) than similar apatite crystals from two IOCG deposits (Candelaria, Casualidad) and a sample of regional mid-Cretaceous igneous rock from near Productora (0.04 ± 0.02 wt % SO3, n = 76). Using published partition coefficients for S between apatite and oxidized silicate melt, we semi-quantitatively estimate corresponding magmatic sulfur contents of ~0.02 wt % S in the Carmen de Andacollo magmas versus ~0.001 to 0.005 wt % S in the IOCG-associated magmas. This is an order of magnitude difference, and the opposite of what would be expected if the difference were due to bulk magma composition (sulfur solubility is generally higher in mafic magmas, whereas here the S content is higher in the more felsic porphyries). We conclude that the porphyry-forming magmas indeed had higher S contents than the IOCG-related magmas and suggest that these differences reflect different petrogenetic processes. During normal subduction, magmas derived from the metasomatized mantle wedge are hydrous, moderately oxidized, and S rich, and have the potential to generate S-rich porphyry-type deposits. In contrast, in back-arc extensional settings, upwelling asthenospheric melts carry a weaker subduction signature, including lower S contents. Interaction of these S-poor magmas with previously subduction modified upper plate lithosphere is more likely to give rise to S-poor IOCG deposits.Keywords:
Metallogeny
Large igneous province
Felsic
Felsic
Caldera
Cite
Citations (0)
Felsic
Quartz monzonite
Lile
Geochronology
Adakite
Cite
Citations (31)
Iron oxide-copper-gold(IOCG) and porphyry copper deposits are all important exploration target due to their large-scale,high economic value.They are together generated in Chile subduction-related continental margin,including the world's large copper porphyry deposits,and have a sharp mineralization sequence in space-time from magnetite-apatite,IOCG,porphyry copper-gold to porphyry copper molybdenum deposits with tectonic-magmatic evolution.Large number of calc-alkaline magmatism and contemporary igneous rocks are an important foundation for formtion of mineralization.Shallow breccia pipes of IOCG deposits share with the alteration features of porphyry copper deposits.Gold-rich porphyry copper deposit have some similar characteristics and more transitional relation to porphyry deposits due to the key factors of evolution of magma intrusion and fluid.It is necessary to pay more attention to structure and alteration of rocks during the exploration.
Breccia
Cite
Citations (1)
SummaryElectrical methods have been applied to the search for porphyry copper and IOCG deposits since the early 1950s. While there is a generally accepted model of disseminated sulfides giving rise to a chargeability response, no clear association has been attached to what EM surveys may be responding to. Work in the early 1990s (Nickson 1993) showed the well-developed supergene blankets over a porphyry copper could be conductive; this observation was however, never applied formally to generally accepted porphyry targeting models. The presence of other conductive zones associated with porphyry copper deposits is even less well studied. On the geological side, while there is a vast body of literature describing porphyry copper deposits and how to discover them, in very few cases do these studies even speculate if anomalous concentrations of sulfides could be conductive. On the geophysical side, observations of unexpected conductivity associated with porphyry systems is sometimes noted but these observations typically stop short of suggesting that there could be a more general observation made that a new class of geophysical feature should be defined. The present study is felt to have gathered a sufficient number of case studies which show that a significant number of porphyry copper deposits posse a mineralogical character which can be identified with EM techniques. This thesis can have significant implications as to how porphyry copper are explored for, especially those at depths >500 m, a generally accepted cut-off for IP techniques.
Supergene (geology)
Reflection
Cite
Citations (2)