The Late Cretaceous diamondiferous pyroclastic kimberlites from the Fort à la Corne (FALC) field, Saskatchewan craton, Canada: Petrology, geochemistry and genesis
5
Citation
127
Reference
10
Related Paper
Citation Trend
Keywords:
Metasomatism
Lapilli
Petrogenesis
동막골응회암은 대부분 화쇄류암으로 구성되지만 입도와 퇴적구조에 따라 암상을 분류하면 (1) 괴상응회각력암, (2) 용결 응회암 및 라필리응회암, (3) 유변상 응회암 및 라필리응회암이 있고 (4) 괴상 라필리응회암, (5) 성층화 라필리응회암, (6) 점이층리 라필리응회암, (7) 불량층리 라필리응회암과 (8) 괴상 세립질 응회암이 있다. 이 암상들은 상하로 3개 화성쇄설암군으로 구별하여 조합할 수 있다. 하부 화성쇄설암군(LI)은 괴상 라필리응회암, 용결 응회암 및 라필리응회암과 유변상 응회암 및 라필리응회암으로 조합되며, 화쇄류형성 분출로부터 끓어넘침 분출에 의한 화쇄류로부터 정치된 것이다. 중부 화성쇄설암군(LT+MI)은 하부에 성층화 라필리응회암, 점이층리 라필리응회암, 괴상 라필리응회암과 이들에 조합된 괴상 세립질 응회암으로 구성되고 중 상부에 괴상 라필리응회암, 용결 응회암 및 라필리응회암과 유변상 응회암 및 라필리응회암으로 조합된다. 이들은 외부물의 소량 유입으로 수증기마그마성 분출에 의한 화쇄써지로 시작하여 끓어넘침 분출의 화쇄류로 전환된 것이다. 상부 화성쇄설암군(lUT+uUT+UI)은 최하부에 성층화 라필리응회암, 점이층리 라필리응회암으로 조합되고, 하부에 괴상 응회각력암, 불량층리 라필리응회암, 괴상 라필리응회암과 괴상 세립질 응회암으로 조합되며 중 상부에 괴상 라필리응회암, 용결 응회암 및 라필리응회암으로 조합되며, 이들은 수증기플리니언 분출에 의한 써지로 시작해서 플리니언 분출에 의한 강하를 거쳐 끓어넘침 분출로 전환되어 화쇄류로부터 퇴적된 것이다. 결론적으로 동막골응회암에서 분출과정은 대체로 전 중 후기 화산작용이 단계별로 수증기플리니언 혹은 플리니언 분출로 시작하여 화쇄류형성 분출로 전환되고 끓어넘침 분출로 진행되는 순서를 밟았다. 그러나 전기 화산작용은 아마도 초엽의 수증기플리니언 혹은 플리니언 분출 없이 진행되었다. The Dongmakgol Tuff is divided into 8 lithofacies based on their grain size and depositional structures: massive tuff breccia(TBm), welded tuff and lapilli tuff(LTw), rheomorphic tuff and lapilli tuff(LTr), massive lapilli tuff(LTm), stratified lapilli tuff(LTs), gradedly bedded lapilli tuff(LTg), crudely bedded lapilli tuff(LTb) and massive fine tuff(Tm). They can be divided into 3 pyroclastic rock group based on their constituents of the lithofacies. The lower group(LI) is composed of LTm, LTw and LTr, which are interpreted to have resulted from emplacement of voluminous pyroclastic flows due to ignimbrite-form eruption to boiling-over eruption. The middle group(LT+MI) consists of LTs, LTg and LTm associated with Tm in the lower part, and of LTm, LTw and LTr in the middle and upper parts; these suggest that started with deposition of pyroclastic surges from phreatoplinian eruption by poor eternal water, passed through emplacement of pyroclastic flows from ignimbrite-form eruption and ended with deposition of voluminous pyroclastic flows from boiling-over eruption. The upper group(lUT+uUT+UI) is composed of LTs, LTg and Tm in the lowermost, TBm, LTb, LTb and Tm in the lower part, and LTm and LTw in the middle and upper part, suggesting that began with deposition of surges from phreatoplinian eruption, passed through deposition of pumice- and ash-fallouts from plinian eruption and transformed into emplacement of pyroclastic flows due to boiling-over eruption. As result, eruptive processes in the Dongmakgol Tuff approximately began with phreatoplinian or/and plinian eruption, transformed into ignimbrite-forming eruption and proceeded into boiling-over eruption in each volcanism, but proceeded presumably without phreatoplinian or plinian eruption in the earlier stage of 1st volcanism.
Lapilli
Pyroclastic fall
Peléan eruption
Volcanic ash
Cite
Citations (1)
Lapilli
Cite
Citations (145)
Xenolith
Cite
Citations (16)
Diatreme
Lapilli
Breccia
Phreatomagmatic eruption
Xenolith
Cite
Citations (49)
Metasomatism
Carbonatite
Omphacite
Peridotite
Cite
Citations (10)
Abstract This paper presents the first major and trace element compositions of mantle-derived garnet xenocrysts from the diamondiferous No. 30 kimberlite pipe in the Wafangdian region, and these are used to constrain the nature and evolution of mantle metasomatism beneath the North China Craton (NCC). The major element data were acquired using an electron probe micro-analyzer and the trace element data were obtained using laser ablation inductively coupled plasma-mass spectrometry. Based on Ni-in-garnet thermometry, equilibrium temperatures of 1107–1365 °C were estimated for peridotitic garnets xenocrysts from the No. 30 kimberlite, with an average temperature of 1258 °C, and pressures calculated to be between 5.0 and 7.4 GPa. In a CaO versus Cr2O3 diagram, 52% of the garnets fall in the lherzolite field and 28% in the harzburgite field; a few of the garnets are eclogitic. Based on rare earth element patterns, the lherzolitic garnets are further divided into three groups. The compositional variations in garnet xenocrysts reflect two stages of metasomatism: early carbonatite melt/fluid metasomatism and late kimberlite metasomatism. The carbonatite melt/fluids are effective at introducing Sr and the light rare earth elements, but ineffective at transporting much Zr, Ti, Y, or heavy rare earth elements. The kimberlite metasomatic agent is highly effective at element transport, introducing, e.g., Ti, Zr, Y, and the rare earth elements. Combined with compositional data for garnet inclusions in diamonds and megacrysts from the Mengyin and Wafangdian kimberlites, we suggest that these signatures reflect a two-stage evolution of the sub-continental lithospheric mantle (SCLM) beneath the NCC: (1) early-stage carbonatite melt/fluid metasomatism resulting in metasomatic modification of the SCLM and likely associated with diamond crystallization; (2) late-stage kimberlite metasomatism related to the eruption of the 465 Ma kimberlite.
Metasomatism
Carbonatite
Trace element
Rare-earth element
Peridotite
Xenolith
Cite
Citations (8)
Garnet xenocrysts from kimberlites provide unique insights into the composition, structure and evolution of the subcontinental lithospheric mantle (SCLM). For example, different metasomatic events in the SCLM are reflected in compositional differences between garnet xenocrysts. As mantle metasomatism largely controls the physical and chemical properties of the SCLM, it exerts first order control over the genesis of kimberlitic magmas and diamond formation. However, dating mantle lithologies and processes is complicated by high ambient temperatures that allow the equilibration of most isotopic systems up to the time of kimberlite eruption. As a consequence, the temporal connection between metasomatic events in the mantle and kimberlite genesis is commonly ambiguous.In this study, we applied LA-ICPMS U-Pb dating to 43 harzburgitic, lherzolithic and megacrystic garnet xenocrysts from the ~376 Ma diamondiferous V. Grib kimberlite, Russia, in order to investigate the link between different types of mantle metasomatism and kimberlite genesis.Our results indicate that, with two possible exceptions, only harzburgitic garnet overlaps in age with the kimberlite eruption, whereas lherzolitic and megacrystic garnet crystals are ~20 to 130 million years older. Furthermore, garnet U-Pb ages and Ni-in-garnet temperatures of ~820 to 1200 °C do not correlate. This, and the high closure temperature of U-Pb in garnet (≥900 °C) suggests that the garnet U-Pb ages indeed reflect metasomatic events in the SCLM. However, the U-Pb ages could also reflect cooling ages. In this case, the metasomatic events recorded in the garnet crystals must still have occurred up to ~130 million years prior to the eruption of the V. Grib kimberlite.These findings have far-reaching implications for the genesis of (diamondiferous) kimberlites, as they clearly show that the time lag between metasomatic events in the SCLM, as recorded in kimberlitic garnet xenocrysts, and kimberlite eruption may extend to tens of millions of years.
Metasomatism
Cite
Citations (0)