logo
    Age, provenance and tectonic setting of the high-grade Jequitinhonha Complex, Araçuaí Orogen, eastern Brazil
    22
    Citation
    47
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    ABSTRACT: The Jequitinhonha Complex of the northeastern Araçuaí orogen is an extensive sedimentary unit metamorphosed in the amphibolite-granulite facies transition around 580-545 Ma. The unit consists of Al-rich (kinzigitic) paragneisses with decametric intercalations of graphite gneisses and quartzites, and centimetric to metric lenses of calcsilicate rocks. A new detrital zircon U-Pb age spectrum is reported for a sample of quartzite, and whole-rock geochemical (major and trace elements, 9 samples) and Sm-Nd isotope data (10 samples) for Jequitinhonha Complex paragneiss. Together with published data these show that: (1) the geochemistry of paragneiss samples of the Jequitinhonha Complex are similar to those of passive margin sedimentary protoliths; (2) detrital zircon data yield U-Pb age populations between ca. 0.9 and 2.5 Ga; and (3) Sm-Nd TDM model ages range from 1.6 to 1.8 Ga and εNd(575 Ma) around -7.5. The data reveal a mixture of Cryogenian to Mesoproterozoic rift-related igneous rocks with the Palaeoproterozoic-Archaean basement rocks of the São Francisco-Congo palaeocontinent as the main source areas, and also support the correlation between the Jequitinhonha Complex and the passive margin units of the upper Macaúbas Group, constituting the precursor basin of the orogen. Our results, with the absence of ophiolites in the Jequitinhonha Complex, reinforce the interpretation that the São Francisco-Congo palaeocontinent was not divided to the north of the focused region, suggesting an ensialic termination of a gulf during the Neoproterozoic.
    Keywords:
    Basement
    Protolith
    As now known, the Archean and Proterozoic appear to have been different worlds: the geology (tectonic style, basinal distribution, dominant rock types), atmospheric composition (O2, CO21, CH4), and surface environment (day-length, solar luminosity, ambient temperature) all appear to have changed over time. And virtually all paleobiologic indicators can be interpreted as suggesting there were significant biotic differences as well: (1) Stromatolites older than 2.5 Ga are rare relative to those of the Proterozoic; their biotic components are largely unknown; and the biogenicity of those older than approx. 3.2 Ga has been questioned. (2) Bona fide microfossils older than approx. 2.4 Ga are rare, poorly preserved, and of uncertain biological relations. Gaps of hundreds of millions of years in the known record make it impossible to show that Archean microorganisms are definitely part of the 2.4 Ga-to-present evolutionary continuum. and (3) In rocks older than approx. 2.2 Ga, the sulfur isotopic record is subject to controversy; phylogenetically distinctive bio-markers are unknown; and nearly a score of geologic units contain organic carbon anomalously light isotopically (relative to that of the Proterozoic and Phanerozoic) that may reflect the presence of Archaeans (Archaebacteria of earlier classifications) but may not (since cellularly preserved Archean-age Archaeans have never been identified).
    Geologic record
    Acritarch
    Citations (0)
    A 1.5-2 m wide fine-grained undeformed acid dyke, cutting the Early Archaean Isua supracrustal succession, was found in 1978 (D.B., J.B.). Preliminary Rb-Sr isotope measurements (F.K.) of small hand samples suggested an unexpected mid-Proterozoic age. Additional material was collected in 1979 (J.B.). Owing to weight restrictions in the helicopter, some of the samples are smaller (100-500 g) than we would normally use, but we feel justified in presenting the results since they suggest Proterozoic granitic activity in the area, which has implications for the later history of the Archaean block.
    Citations (16)
    Most of central Africa is underlain by Archaean terrains (mostly below a Phanerozoic cover), represented by high-grade gneissic complexes and by low-grade granite-greenstone belts. The lowermost Proterozoic is represented either by gneisses in mobile zones or low-grade supracrustals in forelands. The remaining Lower Proterozoic is made of low-grade supracrustal metasediments in mobile zones. Such zones developed thus almost immediately after the end-Archaean cratonization. The successive mobile zones appear to have developed in a centrifugal pattern during the Lower-Proterozoic. The mineral wealth is unevenly distributed. Only some greenstone belts have given an appreciable gold output, whereas the gneissic Archaean terrains have proven to be almost barren. Iron remains an important resource of the Archaean, as manganese is for the Lower Proterozoic. Uranium and some Cu, Co has been found in the Lower Proterozoic of respectively Gabon and Uganda.
    Citations (5)