Rare earth element enrichment in Palaeoproterozoic Fengzhen carbonatite from the North China block
22
Citation
52
Reference
10
Related Paper
Citation Trend
Abstract:
Carbonatites are characterized by the highest concentration of rare earth elements (REEs) of any igneous rock and are therefore good targets for REE exploration. Supergene, hydrothermal, and magmatic REE deposits associated with carbonatites have been widely studied. REE enrichment related to fluorapatite metasomatism in Fengzhen carbonatites in the North China block is reported in this study. REE minerals (monazite, britholite, and Ca-REE-fluorocarbonates) associated with barite and quartz formed as inclusions within the fluorapatite and externally on its surface. Monazite, allanite, barite, and quartz occur as rim grains on the edges of the fluorapatite. Zoned fluorapatite was observed and showed varying chemical composition. Based on back-scattered electron imaging, the dark domains with mineral inclusions contain lower Si (0.3–0.6 wt.% SiO2) and light REE (LREE) [0.36–1.54 wt.% (Y+LREE)2O3] contents than inclusion-poor areas [0.7–1 wt.% SiO2; 2.16–4.51 wt.% (Y + LREE)2O3]. This indicates a dissolution–re-precipitation texture. Different types of monazites were distinguished by their chemical compositions. Monazite inclusions have lower La2O3contents (~13 wt.%) and La/Ndcn (~3) ratios than those (18–26 wt.% and 10–14 for La2O3 and La/Ndcn, respectively) growing externally on the fluorapatite. REE enrichment in the metasomatic fluorapatites is related to different stages of carbonatitic liquids. The early carbonatite-exsolved fluids metasomatized the fluorapatites to form REE mineral inclusions. The late carbonatitic fluids from carbonatite magmas that underwent strong fractional crystallization were enriched in REEs, Al, and Fe and metasomatized the fluorapatites to produce allanite and monazite rim grains.Keywords:
Carbonatite
Fluorapatite
Allanite
Metasomatism
Rare-earth element
Carbonatite
Gangue
Rare-earth element
Allanite
Fluorite
Beneficiation
Cite
Citations (13)
Approximately >50% of global rare earth element (REE) resources are hosted by carbonatite related deposits, of which monazite is one of the most important REE minerals. Monazite dominates more than 30 carbonatite-related REE deposits around the world, including currently exploited mineralization at Bayan Obo and Mount Weld. These deposits are widely distributed across all continents, except Antarctica. Though rare, monazite occurs as the primary mineral in carbonatite, and mostly presents as a secondary mineral that has a strong association with apatite. It can partially or completely replace thin or thick overgrowth apatite, depending on the availability of REE. Other mineral phases that usually crystallize together with monazite include barite, fluorite, xenotime, sulfide, and quartz in a carbonate matrix (e.g., dolomite, calcite). This review of monazite geochemistry within carbonatite-related REE deposits aims to provide information regarding the use of monazite as a geochemical indicator to track the formation history of the REE deposits and also supply additional information for the beneficiation of monazite. The chemical compositions of monazite are highly variable, and Ce-monazite is the dominant solid solution in carbonatite related deposits. Most monazite displays steep fractionation from La to Lu, absent of either Eu or Ce anomalies in the chondrite normalized REE plot. The other significant components are huttonite and cheratite. Some rare sulfur-bearing monazite is also identified with an SO3 content up to 4 wt %. A 147Sm/144Nd ratio with an average ~0.071 for monazite within carbonatite-related ores is similar to that of their host rocks (~0.065), and is the lowest among all types of REE deposits. Sm/Nd variation of monazite from a single complex reflects the differentiation stage of magma, which decreases from early to late. Based on the differences of Nd and Sr abundances, Nd isotopic composition for monazite can be used to track the magma source, whereas Sr isotopic composition records the signatures of the fluid source. Th-(U)-Pb age determination of the secondary monazite records variable thermal or metasomatic disturbances, and careful geochronological interpretation should be brought forward combined with other lines of evidence. ThO2 is the most difficult contamination in the beneficiation of monazite, luckily, the ThO2 content of monazite within carbonatite is generally low (<2 wt %).
Carbonatite
Rare-earth element
Fluorite
Allanite
Metasomatism
Cite
Citations (58)
Abstract The textural and chemical evolution of allanite and monazite along a well‐constrained prograde metamorphic suite in the High Himalayan Crystalline of Zanskar was investigated to determine the P–T conditions for the crystallization of these two REE accessory phases. The results of this study reveals that: (i) allanite is the stable REE accessory phase in the biotite and garnet zone and (ii) allanite disappears at the staurolite‐in isograd, simultaneously with the occurrence of the first metamorphic monazite. Both monazite and allanite occur as inclusions in staurolite, indicating that the breakdown of allanite and the formation of monazite proceeded during staurolite crystallization. Staurolite growth modelling indicates that staurolite crystallized between 580 and 610 °C, thus setting the lower temperature limit for the monazite‐forming reaction at ~600 °C. Preservation of allanite and monazite inclusions in garnet (core and rim) constrains the garnet molar composition when the first monazite was overgrown and subsequently encompassed by the garnet crystallization front. Garnet growth modelling and the intersection of isopleths reveal that the monazite closest to the garnet core was overgrown by the garnet advancing crystallization front at 590 °C, which establishes an upper temperature limit for monazite crystallization. Significantly, the substitution of allanite by monazite occurs in close spatial proximity, i.e. at similar P–T conditions, in all rock types investigated, from Al‐rich metapelites to more psammitic metasedimentary rocks. This indicates that major silicate phases, such as staurolite and garnet, do not play a significant role in the monazite‐forming reaction. Our data show that the occurrence of the first metamorphic monazite in these rocks was mainly determined by the P–T conditions, not by bulk chemical composition. In Barrovian terranes, dating prograde monazite in metapelites thus means constraining the time when these rocks reached the 600 °C isotherm.
Allanite
Staurolite
Isograd
Cite
Citations (39)
<p>Table S1: The chemical compositions of allanite and monazite from the Huangjiagou carbonatite. Table S2: The U-Th-Pb date of monazite and allanite from the Huangjiagou carbonatite. Table S3: The Sr-Nd isotope data of monazite and allanite from the Huangjiagou carbonatite.</p>
Carbonatite
Allanite
Rare-earth element
Trace element
Cite
Citations (0)
Monazite, a typical light rare-earth element (LREE) mineral of S-type granitoids in the Western Carpathians, was found in the peraluminous biotite granodiorite-tonalite in the Tribeč Mountains commonly containing polymineralic inclusions. These inclusions are dominated by anhedral allanite, although allanite also occurs rarely as discrete grains not enclosed by monazite. The monazite studied here is relatively homogeneous and characterized by high Th contents with proportions of huttonite (ThSiO4) and brabantite [CaTh(PO4)2] up to 14.6 and 9.3%, respectively. The discrete allanite grains are highly aluminous with a composition consistent with the peraluminous type of host rock. However, allanite included in monazite is extremely variable in LREE, Al, Fe, and Mg contents. This variation is interpreted to result from entrapment of allanite (+ melt) in monazite before local equilibrium was attained. The change from allanite to monazite as the stable LREE-rich phase is related to an overall decrease in Ca concentration caused by the onset of plagioclase crystallization. The early precipitation of allanite was possible because of the high LREE concentrations in the melt. The crystallization temperature of allanite must have been higher than monazite saturation (>856-845 °C and 798-790 °C for two analyzed samples). The Zr saturation temperature based on zircon solubility and REE thermometry based on monazite solubility reflect an increase in temperature from the edge to the center of the pluton, which coincides with an increase in the huttonite content in monazite. The primary LREE assemblage is accompanied by small grains of late huttonite(?) replacing monazite and brabantite replacing allanite.
Allanite
Rare-earth element
Cite
Citations (78)
Monazite ages from carbonatites and high-grade assemblages exposed along a significant lineament within the Southern Granulite Terrane of India termed the Kambam fault were obtained in thin section (in situ) using an ion microprobe. X-ray maps for Ce and Th were acquired in larger monazites to decipher the significance of the ages of individual spots within grains. The Kambam carbonatite contains large (millimeter-sized) apatite rimmed by ~10 μm thick bands of monazite. Monazite commonly appears as a lower-Th, late-stage mineral in carbonatites, and bands surrounding apatite are interpreted as products of metasomatism, rather than exsolution. The age of a Kambam carbonatite monazite band is 715 ± 42 Ma (Th-Pb, ± 1σ), but monazite filling cracks within the apatite is ~300 m.y. younger (405 ± 5 Ma). The younger monazite grains are in contact with quartz, a mineral thought to be an indicator of subsolidus alteration in carbonatites. The age of the monazite rim is similar to ages of several carbonatites located 50-400 km further north, and chemical analyses show that this sample displays chemical trends similar to the other complexes (e.g., Y/Ho, Ce/Pb, REE, and HFSE patterns). The mid-Neoproterozoic event is recorded in garnet-bearing assemblages ~20 km west of the Kambam fault (733 ± 15 Ma) and garnet-bearing enclaves within Southern Granulite Terrane charnockites (701 ± 26 Ma; 786 ± 84 Ma). The results show that monazite can crystallize during metasomatism and be useful in deciphering fluid processes occurring at deeper crustal levels. The Kambam fault, which records over 300 million years of monazite growth, should be considered a major boundary in reconstructions of Gondwana.
Carbonatite
Metasomatism
Cite
Citations (28)
Abstract Fluorapatite grains with monazite inclusions and/or rim grains are described in two of four samples from a set of granulite-facies metapelites collected from the Variscan Schwarzwald, southern Germany. Fluorapatite in all four samples appears to have experienced some dissolution in the partial granitic melt formed during granulite-facies metamorphism. Monazite inclusions and rim grains are highly deficient in Th and are presumed to have formed from fluorapatite in association with partial melting during granulite-facies metamorphism. Monazite inclusions range from very small (<1 μm) and very numerous to small (1–2 μm), sometimes elongated, and less numerous; both types are evenly distributed throughout the fluorapatite grain interior. Monazite rim grains tend to be 1–10 μm. The formation of monazite inclusions is proposed to be due to dissolution-reprecipitation of the fluorapatite by the aqueous fluids inherent in the granitic melt. We propose that an increase in inclusion size coupled with a decrease in inclusion number is due to Ostwald ripening (interfacial energy reduction), which is greatly facilitated by the presence of an interconnected, fluid-filled porosity in the metasomatized fluorapatite. We further propose that monazite rim grains formed principally during partial dissolution of the fluorapatite in the granitic melt and to a lesser extent by partial dissolutionreprecipitation of the fluorapatite grain rim area allowing for the partial removal of (Y+ REE ). We conclude that fluorapatite, with monazite inclusions and rim grains, experienced partial dissolution in a H2O-rich peraluminous granitic melt compared to fluorapatite with monazite rim grains and no inclusions which reacted with a similar, relatively less H 2 O-rich melt. In contrast, monazite-free fluorapatite experienced partial dissolution in a comparatively H 2 O-poor, subaluminous, possibly peralkaline melt.
Fluorapatite
Cite
Citations (30)
Abstract Carbonatite hosts the most important rare earth resources in the world, but the precise timing, ore-forming history, and mechanism of rare earth mineralization in carbonatite systems are still in debate. Here, we report a rare corona texture of monazite-allanite-fluorapatite from the Huangjiagou carbonatite in the Lesser Qinling of central China, and demonstrate that the U-Th-Pb dating, trace elements, and Sr-Nd isotopes of these minerals in the corona are useful tools to unravel multiple-stage events for rare earth element (REE) mineralization and mobilization. The first mineralization event took place at ca. 219 Ma as revealed by the monazite U-Pb age, the same as regional carbonatite forming ages, but the Th-Pb age has been disturbed, which shows a negative correlation with Th contents. The second mineralization event occurred at ca. 128 Ma, as revealed by in situ U-Pb dating of allanite, coeval with the intrusions of neighboring I-type granite. The initial Sr-Nd isotope ratios of allanite show a downtrend from the center to the rim of monazite-allanite-apatite coronas to approach the ratios of neighboring granite, indicating an increasing effect by the metasomatism of magmatic-hydrothermal fluids during the growth of these REE-mineral coronas. Therefore, a two-episode REE mineralization was recognized with the replacement of ca. 219 Ma monazite by ca. 128 Ma allanite-apatite coronas on the function of magmatic-hydrothermal fluid metasomatism, and this process accompanies the disturbance of Th/Pb geochronology in monazite. Allanite as the product of monazite dissolution can represent the later-stage REE mineralization tracing the REE reworking processes under the hydrothermal conditions in carbonatite systems. Our study highlights the implication of monazite-allanite-fluorapatite coronas on the REE remobilization and mineralization in carbonatite systems.
Allanite
Carbonatite
Rare-earth element
Metasomatism
Cite
Citations (0)
The REE enrichment process in fluorapatite and the REE redistribution among fluorapatite, monazite, and allanite were studied in a series of three sets of experimental runs at P-T conditions of 0.5 to 4 GPa and 650 to 900 °C. The first two sets of experimental runs utilized fluorapatite as a P-source, synthetic monazite or allanite as the REE sources, albite, quartz, and NaF-H2O or NaCl-H2O. The third set of runs was carried out with powdered Ca3(PO4)2, allanite, quartz, (±Al2O3), and a NaF-H2O solution.
Allanite
Fluorapatite
Redistribution
Cite
Citations (29)
Carbonatite
Allanite
Pegmatite
Rare-earth element
Cite
Citations (39)