logo
    The nature of organic records in impact excavated rocks on Mars
    16
    Citation
    57
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.
    The physical state of water on Mars has fundamental ramifications for both climatology and astrobiology. The widespread presence of “softened” Martian landforms (such as impact craters) can be attributed to viscous creep of subsurface ground ice. We present laboratory experiments designed to determine the minimum amount of ice necessary to mobilize topography within Martian permafrost. Our results show that the jammed‐to‐mobile transition of icy sand packs neither occurs at fixed ice content nor is dependent on temperature or stress, but instead correlates strongly with the maximum dry packing density of the sand component. Viscosity also changes rapidly near the mobility transition. The results suggest a potentially lower minimum volatile inventory for the impact‐pulverized megaregolith of Mars. Furthermore, the long‐term preservation of partially relaxed craters implies that the ice content of Martian permafrost has remained close to that at the mobility transition throughout Martian history.
    Landform
    Martian soil
    Citations (29)