Continental Crust, Crustal Evolution, and the Caribbean
7
Citation
0
Reference
10
Related Paper
Citation Trend
Abstract:
Attention is focused on the genesis and tectonic behavior of the crust, especially the continental crust. A distinction is made between the rigid upper mantle, or peridosphere, and the crust which overlies it. Crust and peridosphere together make up the lithosphere.A combination of seismic reflection and gravimetric imagery has been used to map four sectors of proto-oceanic crust along conjugate segments of the West African and Brazilian margins. These form corridors isolating oceanic crust, produced about the post-118 Ma pole of rotation, from continental crust. Seaward of the proto-oceanic crust/oceanic crust boundary, relatively uniform, thin oceanic crust (4.2–6.5 km thick) has been generated at the paleo-Mid-Atlantic Ridge. Structural variability is limited largely to fracture zones. Proto-oceanic crust in the northern sectors (i.e., Kribi, Mbini, and Ogooue) is up to 10 km thick, block-faulted, compartmentalized, and seismically layered. These sectors of proto-oceanic crust likely were generated by slow spreading, as the relative plate motions evolved from left-lateral dislocation along the
Cite
Citations (33)
In this article, we study the possibility that Ceres has, or had in the past, a crust heavier than a pure or muddy ice mantle, in principle gravitationally unstable. Such a structure is not unusual in the Solar system: Callisto is an example. In this work, we test how the composition (i.e. the volumetric quantity of ice) and the size of the crust can affect its survival during thermo-physical evolution after differentiation. We have considered two different configurations: the first characterized by a dehydrated silicate core and a mantle made of pure ice, the second with a hydrated silicate core and a muddy mantle (ice with silicate impurities). In both cases, the crust is composed of a mixture of ice and silicates. These structures are constrained by a recent measurement of the mean density by Park et al. The Rayleigh–Taylor instability, which operates in such an unstable structure, could reverse all or part of the crust. The whole unstable crust (or part of it) can interact chemically with the underlying mantle and what is currently observed could be a partially/totally new crust. Our results suggest that, in the case of a pure ice mantle, the primordial crust has not survived until today, with a stability timespan always less than 3 Gyr. Conversely, in the case of a muddy mantle, with some 'favourable' conditions (low volumetric ice percentage in the crust and small crustal thickness), the primordial crust could be characterized by a stability timespan compatible with the lifetime of the Solar system.
Dwarf planet
Cite
Citations (12)
[1] Although presence of weak layers due to hydration and/or metasomatism in the lithospheric mantle of cratons has been detected by both geophysical and geochemical studies, its influence on craton evolution remains elusive. Using a 2‒D thermomechanical viscoelastoplastic numerical model, we studied the craton extension of a heterogeneous lithospheric mantle with a rheologically weak layer. Our results demonstrate that the effect of the weak mantle layer is twofold: (1) enhances deformation of the overlying lithosphere and (2) inhibits deformation of the underlying lithospheric mantle. Depending on the weak‒layer depth, the Moho temperature and extension rate, three extension patterns are found (1) localized mantle necking with exposed weak layer, (2) widespread mantle necking with exposed weak layer, and (3) widespread mantle necking without exposed weak layer. The presence of the weak mantle layer reduces long‒term acting boundary forces required to sustain extensional deformation of the lithosphere.
Necking
Metasomatism
Cite
Citations (25)
Carbon sink
Adakite
Sink (geography)
Carbon fibers
Cite
Citations (458)
Continental Margin
Upper crust
Cite
Citations (5,364)
Seafloor Spreading
Seamount
Cite
Citations (147)
Radiogenic nuclide
Adakite
Upper crust
Cite
Citations (124)
Deviation from isostasy is commonly believed to be caused by the strength of the Earth's lithosphere. An analysis of crustal compensation dynamics suggests that the deviation may have a dynamic origin. The analysis is based on analytic models that assume that (1) the medium is incompressible and has a layered and linear viscoelastic rheology and (2) the amplitude of topography is small compared with its wavelength. The models can describe topographic relaxation of different density interfaces at both small (e.g., postglacial rebound) and large time‐scales. The models show that for a simple crust‐mantle system with topography at the Earth's surface and Moho representing the only mass anomalies, while the crust always approaches the isostatic state at long wavelengths (>800 km), crustal isostasy may not be an asymptotic limit at short wavelengths, depending on crustal and lithospheric rheology. For a crust with viscosity smaller than lithospheric viscosity, at wavelengths comparable with widths of orogenic belts (i.e., <300 km), the crust tends to approach a state with significant overcompensation (i.e., excess topography at the Moho) within a timescale of about 10 7 years, and this characteristic time depends on wavelengths and crustal viscosity. This overcompensation is greater for weaker crust and stronger lithosphere. A thicker crust or lithosphere also enhances this overcompensation. If crustal and lithospheric viscosities are both large and comparable, the asymptotic state for the crust displays a slight undercompensation. For an elastic and rigid upper crust, the crust eventually becomes undercompensated after a characteristic decay time of topography at the Moho. The characteristic time is dependent on viscosity and thickness of the lower crust. The deviation from isostasy arises because these viscosity structures result in a ratio of vertical velocity at the surface to vertical velocity at the Moho which in the asymptotic state for short wavelengths differs from the ratio of density contrast at the Moho to that at the surface.
Isostasy
Cite
Citations (47)