logo
    Understanding polyphase deformation in glacial sediments
    0
    Citation
    0
    Reference
    10
    Related Paper
    Abstract. Bedrock erosion by sediment-bearing subglacial water remains little-studied; however, the process is thought to contribute to bedrock erosion rates in glaciated landscapes and is implicated in the excavation of tunnel valleys and the incision of inner gorges. We adapt physics-based models of fluvial abrasion to the subglacial environment, assembling the first model designed to quantify bedrock erosion caused by transient subglacial water flow. The subglacial drainage model consists of a one-dimensional network of cavities dynamically coupled to one or several Röthlisberger channels (R-channels). The bedrock erosion model is based on the tools and cover effect, whereby particles entrained by the flow impact exposed bedrock. We explore the dependency of glacial meltwater erosion on the structure and magnitude of water input to the system, the ice geometry, and the sediment supply. We find that erosion is not a function of water discharge alone, but also depends on channel size, water pressure, and sediment supply, as in fluvial systems. Modelled glacial meltwater erosion rates are 1 to 2 orders of magnitude lower than the expected rates of total glacial erosion required to produce the sediment supply rates we impose, suggesting that glacial meltwater erosion is negligible at the basin scale. Nevertheless, due to the extreme localization of glacial meltwater erosion (at the base of R-channels), this process can carve bedrock (Nye) channels. In fact, our simulations suggest that the incision of bedrock channels several centimetres deep and a few metres wide can occur in a single year. Modelled incision rates indicate that subglacial water flow can gradually carve a tunnel valley and enhance the relief or even initiate the carving of an inner gorge.
    Bedrock
    Meltwater
    Citations (55)
    Abstract Lineament maps drawn from several LANDSAT images of a part of north Wales and western England display considerable variation in the number of lineaments identified. Analysis of the maps shows that it is not the case that maps with fewer lineaments are simply subsets of those with many lineaments. Rather, each map contains a high proportion of lineaments that are unique to it. Despite these differences, the same preferred lineament orientation is identified from almost all maps. These results imply that all available LANDSAT imagery may usefully contribute to a lineament analysis, little value may be placed on the density of lineaments seen on any one image and preferred lineament orientation is relatively easy to identify. It is concluded that guarded use may be made of lineament analysis in geology. Lineament maps may be employed to suggest hypotheses rather than to test them.
    Lineament
    Citations (7)
    Abstract. Bedrock erosion by sediment-bearing subglacial water remains little-studied, however the process is thought to contribute to bedrock erosion rates in glaciated landscapes and is implicated in the excavation of tunnel valleys and the incision of inner gorges. We adapt physics-based models of fluvial abrasion to the subglacial environment, assembling the first model designed to quantify bedrock erosion caused by transient subglacial water flow. The subglacial drainage model consists of a one-dimensional network of cavities dynamically coupled to one or several Röthlisberger channels (R-channels). The bedrock erosion model is based on the tools and cover effect, whereby particles entrained by the flow impact exposed bedrock. We explore the dependency of glacial meltwater erosion on the structure and magnitude of water input to the system, the ice geometry and the sediment supply. We find that erosion is not a function of water discharge alone, but also depends on channel size, water pressure and on sediment supply, as in fluvial systems. Modelled glacial meltwater erosion rates are one to two orders of magnitude lower than the expected rates of total glacial erosion required to produce the sediment supply rates we impose, suggesting that glacial meltwater erosion is negligible at the basin scale. Nevertheless, due to the extreme localization of glacial meltwater erosion (at the base of R-channels), this process can carve bedrock (Nye) channels. In fact, our simulations suggest that the incision of bedrock channels several centimetres deep and a few meters wide can occur in a single year. Modelled incision rates indicate that subglacial water flow can gradually carve a tunnel valley and enhance the relief or even initiate the carving of an inner gorge.
    Bedrock
    Meltwater
    Citations (3)
    Abstract. Greenland ice sheet mass losses have increased in recent decades with approximately half of these attributed to increased surface meltwater runoff. However, controls on ice sheet water release, and the magnitude of englacial storage, firn densification, internal refreezing and other hydrologic processes that delay or reduce true water export to the global ocean remain poorly understood. This problem is amplified by scant hydrometerological measurements. Here, ice sheet surface meltwater runoff and proglacial river discharge determined between 2008 and 2010 for three sites near Kangerlussuaq, western Greenland were used to establish the water budget for a small ice sheet watershed. The water budget could not be closed in the three years, even when uncertainty ranges were considered. Instead between 12% and 53% of ice sheet surface runoff is retained within the glacier each melt year (time between onset of ice sheet runoff in two consecutive years). Evidence of the ice sheet summer meltwater escaping during the cold-season suggests that the Greenland ice sheet cryo-hydrologic system may remain active year round.
    Greenland ice sheet
    Meltwater
    Ice-sheet model
    Glacier morphology
    Glacier ice accumulation
    Melt pond
    Citations (4)
    Abstract Subglacial water flow drives the excavation of a variety of bedrock channels including tunnel valleys and inner gorges. Subglacial floods of various magnitudes – events occurring once per year or less frequently with discharges larger than a few hundred cubic metres per second – are often invoked to explain the erosive power of subglacial water flow. In this study we examine whether subglacial floods are necessary to carve bedrock channels, or if more frequent melt season events (e.g. daily production of meltwater) can explain the formation of substantial bedrock channels over a glacial cycle. We use a one‐dimensional numerical model of bedrock erosion by subglacial meltwater, where water flows through interacting distributed and channelized drainage systems. The shear stresses produced drive bedrock erosion by bed‐ and suspended‐load abrasion. We show that seasonal meltwater discharge can incise an incipient bedrock channel a few tens of centimetres deep and several metres wide, assuming abrasion is the only mechanism of erosion, a particle size of D =256 mm and a prescribed sediment supply per unit width. Using the same sediment characteristics, flood flows yield wider but significantly shallower bedrock channels than seasonal meltwater flows. Furthermore, the smaller the shear stresses produced by a flood, the deeper the bedrock channel. Shear stresses produced by seasonal meltwater are sufficient to readily transport boulders as bedload. Larger flows produce greater shear stresses and the sediment is carried in suspension, which produces fewer contacts with the bed and less erosion. We demonstrate that seasonal meltwater discharge can excavate bedrock volumes commensurate with channels several tens of metres to a few hundred metres wide and several tens of metres deep over several thousand years. Such simulated channels are commensurate with published observations of tunnel valleys and inner gorges. Copyright © 2018 John Wiley & Sons, Ltd.
    Meltwater
    Bedrock
    Stream power
    Citations (35)