In-situ characterisation of aerosol and gases (SO 2 , HCl, ozone) in Mt Etna volcano plume
Tjarda RobertsDamien VignellesGaetano GiudiceMarco LiuzzoAlessandro AiuppaMichel ChartierB. CoutéThibaut LurtonJean‐Baptiste Renard
0
Citation
0
Reference
20
Related Paper
Abstract:
We present findings from a measurement campaign that deployed a range of in-situ real-time atmospheric measurement techniques to characterise aerosols and gases in Mt Etna plume in October 2013. The LOAC (Light Optical Aerosol Counter) instrument for size-resolved particle measurements was deployed alongside two Multi-Gas instruments (measuring SO 2 , H2S, HCl, CO 2) and an ozone sensor. Measurements were performed at the summit craters (in cloudy-and non-cloudy conditions) and in grounding downwind plume on the volcano flank. These high frequency measurements (acid gases: 1 to 0.1 Hz, aerosol: 0.1 Hz) provide a detailed in-situ dataset for time-resolved plume characterisation and volcano monitoring. The LOAC measurement of sized-resolved aerosol (over a 0.2 to 50 µm particle diameter range) alongside SO 2 (10's ppbv to 10's ppmv) provides a valuable dataset for determining the volcanic aerosol volume and surface area to SO 2 ratios. These parameters are presently poorly defined but are important for atmospheric models of the reactive halogen chemistry that occurs on volcanic aerosol surfaces to convert volcanic HBr into reactive bromine, including BrO. The LOAC's patented optical design can also provide insights into particle properties. The two Multi-Gas SO 2 time-series show good agreement, detecting co-varying plume fluctuations in the downwind plume, which also correlate with the LOAC total aerosol volume time-series. An estimate of HCl/SO 2 in Etna emissions was made by Multi-Gas electrochemical sensor, using a novel design to limit absorption/desorption effects and low-noise electronics for improved resolution. The detection of volcanic HCl by electrochemical sensor brings new possibilities for Multi-Gas monitoring of volcanic halogen emissions. Electrochemical sensor response times are not instantaneous, particularly for sticky gases such as HCl (T90 ∼min), but also even for fast response (T90 ∼ 10 to 30 s) sensors such as SO 2 and H2S. However, in a volcanic plume environment, Multi-Gas instruments are exposed to very rapidly fluctuating gas concentrations due to turbulent plume eddies. The combination of these effects can introduce measurement errors, emphasizing a need for sensor response modelling approaches for accurate determination of gas ratios from Multi-Gas instruments.Keywords:
Trace gas
Panache
Cite
A new type of instrument for in-situ detection of volcanic sulfur dioxide is presented on the basis of non-dispersive UV absorption spectroscopy. It is a promising alternative to presently used compact and low-cost SO2 monitoring techniques, over which it has a series of advantages, including an inherent calibration, fast response times (< 2 s to reach 90 % of the applied concentration), a measurement range spanning about 5 orders of magnitude and small, well known cross sensitivities to other gases. Compactness, cost-efficiency and detection limit (< 1 ppm, few ppb under favourable conditions) are comparable to other presently used in-situ instruments. Our instrument prototype has been extensively tested in comparison studies with established methods. In autumn 2015, diverse volcanic applications were investigated such as fumarole sampling, proximal plume measurements and airborne measurements several kilometers downwind from the vent on Mt. Etna and White Island. General capabilities and limitations of the measurement principle are discussed, considering different instrument configurations and future applications.
Fumarole
Volcanic Gases
Cite
Citations (9)
Atmospheric methane
Petroleum seep
Panache
Cite
Citations (30)
Trace gas
TRACER
Fugitive emissions
Cite
Citations (117)
Measurements and analysis are presented of the partitioning of HCl between hydrochloric acid aerosol and gaseous HCl in a Titan III exhaust cloud, as the cloud is diluted with humid ambient air. Partitioning was determined by measuring the gaseous HCl concentration with a recently developed airborne Gas Filter Correlation detector and simultaneously with a chemiluminescence detector which measures total HCl. Although equilibrium predictions for HCl aerosol formation indicated that no HCl aerosol should exist in the exhaust cloud for the meteorological conditions of this launch, the measurements indicated significant HCl aerosol formation. These measurements will provide verification for advanced modeling programs now under development.
Hydrogen chloride
Cite
Citations (2)
In their recent study, Pering et al. (2017) presented a novel method for measuring volcanic water vapor fluxes. Their method is based on imaging volcanic gas and aerosol plumes using a camera sensitive to the near-infrared (NIR) absorption of water vapor. The imaging data are empirically calibrated by comparison with in situ water measurements made within the plumes. Though the presented method may give reasonable results over short time scales, the authors fail to recognize the sensitivity of the technique to light scattering on aerosols within the plume. In fact, the signals measured by Pering et al. are not related to the absorption of NIR radiation by water vapor within the plume. Instead, the measured signals are most likely caused by a change in the effective light path of the detected radiation through the atmospheric background water vapor column. Therefore, their method is actually based on establishing an empirical relationship between in-plume scattering efficiency and plume water content. Since this relationship is sensitive to plume aerosol abundance and numerous environmental factors, the method will only yield accurate results if it is calibrated very frequently using other measurement techniques.
Panache
Cite
Citations (3)
Abstract. Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.
Cite
Citations (43)
For the first time, ultrafine volcanic aerosols are monitored continuously by Photoelectric Charging of Particles (PCP) at Mt.Etna, Sicily. The measured quantity, the photoelectric activity of the aerosols, ε, is a measure of the relative copper content in the nanometer sized particles and may be related to the release of chlorides from magma. A monitoring system was set up in the plume of Mt.Etna in 1991. The data show a connection to the volcanic activity. Events of magmatic activity on a short time scale of 45 sec as well as the general evolution over several months are apparent.
Photoelectric effect
Nanometre
Panache
Ultrafine particle
Cite
Citations (11)
Abstract. Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulfur compounds. The Atmospheric chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using SF5− reagent ions for the simultaneous measurement of trace gas concentrations of HCl, HNO3 and SO2 in the pptv to ppmv (10−12 to 10−6 mol mol−1) range with in-flight and online calibration called AIMS-TG (Atmospheric chemical Ionization Mass Spectrometer for measurements of trace gases). Part 1 of this paper (Kaufmann et al., 2016) reports on the UTLS water vapor measurements with the AIMS-H2O configuration. The instrument can be flexibly switched between two configurations depending on the scientific objective of the mission. For AIMS-TG, a custom-made gas discharge ion source has been developed for generation of reagent ions that selectively react with HCl, HNO3, SO2 and HONO. HNO3 and HCl are routinely calibrated in-flight using permeation devices; SO2 is continuously calibrated during flight adding an isotopically labeled 34SO2 standard. In addition, we report on trace gas measurements of HONO, which is sensitive to the reaction with SF5−. The detection limit for the various trace gases is in the low 10 pptv range at a 1 s time resolution with an overall uncertainty of the measurement of the order of 20 %. AIMS has been integrated and successfully operated on the DLR research aircraft Falcon and HALO (High Altitude LOng range research aircraft). As an example, measurements conducted during the TACTS/ESMVal (Transport and Composition of the LMS/UT and Earth System Model Validation) mission with HALO in 2012 are presented, focusing on a classification of tropospheric and stratospheric influences in the UTLS region. The combination of AIMS measurements with other measurement techniques yields a comprehensive picture of the sulfur, chlorine and reactive nitrogen oxide budget in the UTLS. The different trace gases measured with AIMS exhibit the potential to gain a better understanding of the trace gas origin and variability at and near the tropopause.
Trace gas
Atmospheric chemistry
Methanethiol
Cite
Citations (48)
Trace gas
TRACE (psycholinguistics)
Cite
Citations (0)
Atmospheric trace gases exist in the atmosphere of the earth rarely. But the atmospheric trace gases play an important role in the global atmospheric environment and ecological balance by participating in the global atmospheric cycle. And many environmental problems are caused by the atmospheric trace gases such as photochemical smog, acid rain, greenhouse effect, ozone depletion, etc. So observations of atmospheric trace gases become very important. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) developed recently is a kind of promising passive remote sensing technology which can utilize scattered sunlight received from multiple viewing directions to derive vertical column density of lower tropospheric trace gases like ozone, sulfur dioxide and nitrogen dioxide. It has advantages of simple structure, stable running, passive remote sensing and real-time online monitoring automatically. A MAX-DOAS has been developed at Shandong Academy of Sciences Institute of Oceanographic Instrumentation (SDIOI) for remote measurements of lower tropospheric trace gases (NO2, SO2, and O3). In this paper, we mainly introduce the stucture of the instrument, calibration and results. Detailed performance analysis and calibration of the instrument were made at Qingdao. We present the results of NO2, SO2 and O3 vertical column density measured in the coastal boundary layer over Jiaozhou Bay. The diurnal variation and the daily average value comparison of vertical column density during a long-trem observation are presented. The vertical column density of NO2 and SO2 measured during Qingdao oil pipeline explosion on November 22, 2013 by MAX-DOAS is also presented. The vertical column density of NO2 reached to a high value after the explosion. Finally, the following job and the outlook for future possible improvements are given. Experimental calibration and results show that the developed MAX-DOAS system is reliable and credible.
Trace gas
Atmosphere of Earth
Atmospheric chemistry
Nitrogen dioxide
Cite
Citations (1)