Oil families and mixed oil of the North–Central West Siberian basin, Russia
19
Citation
21
Reference
10
Related Paper
Citation Trend
Abstract:
The recognition, correlation, and quantification of oil mixtures remain challenging in petroleum system studies. Most prolific basins have multiple source rocks that generate petroleum over wide ranges of maturity. Compound-specific isotopic analyses of alkanes (CSIA-A) and diamondoids (CSIA-D) are very effective for determining hydrocarbon mixtures. Quantitative diamondoid analysis (QDA) and CSIA-D provide a unique advantage for source correlation of thermally altered liquids or condensates and for condensate mixtures with black oil. Biomarker fingerprints, QDA, and various CSIA methods were applied to 37 oil and condensate samples to investigate the existence of deep sources and to identify and deconvolute cosourced oil mixtures. The data were used to unravel the components of mixed oil having widely diverse levels of maturity in the north–central West Siberian basin. Three oil families and their locations are recognized in the basin. One of the families appears to be composed of oil mixtures derived from two end-member families that originated from the Upper Jurassic Bazhenov and Lower to Middle Jurassic Tyumen source rocks. Our results suggest that a significant part of the gas in the giant gas fields of north–central western Siberia (e.g., Urengoi and Yamburg) is of thermogenic origin. The source of this thermal gas, which was formerly assigned to various source origins, was determined to be the Tyumen Formation. Some samples in the basin also show mixtures of noncracked Bazhenov oil with cracked Tyumen condensate. The area where prevalent oil cracking has occurred was determined from QDA.Protolith
Felsic
Banded iron formation
Greenschist
Basement
Geochronology
Cite
Citations (27)
Research Article| December 01, 1987 Upper Proterozoic evaporites in the Amadeus basin, central Australia, and their role in basin tectonics JOHN F. LINDSAY JOHN F. LINDSAY 1Division of Continental Geology, Bureau of Mineral Resources, P.O. Box 378, Canberra ACT 2601, Australia Search for other works by this author on: GSW Google Scholar Author and Article Information JOHN F. LINDSAY 1Division of Continental Geology, Bureau of Mineral Resources, P.O. Box 378, Canberra ACT 2601, Australia Publisher: Geological Society of America First Online: 01 Jun 2017 Online ISSN: 1943-2674 Print ISSN: 0016-7606 Geological Society of America GSA Bulletin (1987) 99 (6): 852–865. https://doi.org/10.1130/0016-7606(1987)99<852:UPEITA>2.0.CO;2 Article history First Online: 01 Jun 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation JOHN F. LINDSAY; Upper Proterozoic evaporites in the Amadeus basin, central Australia, and their role in basin tectonics. GSA Bulletin 1987;; 99 (6): 852–865. doi: https://doi.org/10.1130/0016-7606(1987)99<852:UPEITA>2.0.CO;2 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGSA Bulletin Search Advanced Search Abstract The Amadeus basin, an isolated intracratonic basin in the center of the Australian continent, contains an upper Proterozoic to mid-Paleozoic stratigraphic succession of shallow-marine sediments that, in places, exceeds; 14 km in thickness. The Gillen Member of the Bitter Springs Formation, which occur toward the base of the upper Proterozoic succession, includes evaporites which are among the world's earliest (∼0.8 to 0.7 Ga). Because of their age, the evaporites have been cited in discussions of sea-water chemistry and have been the focus of scrutiny for early life forms. In spite of their importance, the evaporites are poorly known, particularly from the viewpoint of their depositional and tectonic setting. In an attempt to rectify this deficiency, more than 6,000 km of seismic data were analyzed, in conjunction with a field and well-log study of the unit.The Late Proterozoic Amadeus basin appears to have consisted of two major poorly circulated anoxic sub-basins, which perhaps opened to the ocean to the southeast through the Adelaide geosyncline. Data relating to facies are limited but suggest that deposition of the evaporites was cyclic and followed the patterns identified in other major evaporite basins, the carbonates and sulfates being closer to the basin margins and later stage halite and possibly potassium salts being toward the basin center. The evaporites were deposited in a shallow-marine setting at the time of a relative sea-level high stand. The apparent sea-level high, may relate to basin dynamics, whereas the cyclicity of the evaporites may be due to eustatic sea-level controls acting on the barrier to allow intermittent inflow of sea water.Salt tectonism began shortly after the evaporites were deposited and continued throughout basin development. Consequently, most of the major anticlinal structures have salt cores. The geometry of the salt structures suggests that during their growth, the mean strain rate was 10−16 s−1, a rate typical of large salt structures. Growth on these salt structures has played an important role in controlling later sedimentation, particularly during the Cambrian. This content is PDF only. Please click on the PDF icon to access. First Page Preview Close Modal You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Icon
Cite
Citations (71)
Yilgarn Craton
Greenstone belt
Hornblende
Arsenopyrite
Dike
Cite
Citations (28)
Tectonic forcing of stratigraphic architecture is likely in foreland basins. Tectonic driving forces are increasingly being invoked to explain stratigraphic patterns in the Cretaceous Western Interior Seaway Basin of North America, yet the evidence is largely circumstantial, and the details of driving forces remain elusive. In this paper I show direct stratigraphic evidence for syndepositional growth of a structural arch with at least 50 m of relief during accumulation of the upper Turonian Ferron Sandstone in south-central Utah, United States. Progressive growth of the arch was superimposed on several high-frequency stratal cycles that were driven by a more regionally extensive process (geodynamic or eustatic) and that produced laterally amalgamated sandstone bodies in a depositional strike-parallel orientation (north-south). All of this stratigraphy was then truncated by a more or less planar erosion surface (sequence boundary) that can be traced physically over at least 67 km north-south. This surface was later tilted northward, such that the upper member of the Ferron Sandstone thins progressively southward from 50 to 10 m over 67 km. The facies juxtapositions revealed by the Ferron Sandstone could, if seen in exposure of limited lateral extent, be wrongly interpreted as recording regionally extensive relative sea-level drops and potentially used in error as evidence for substantial eustatic sea-level falls during the Turonian. The folding and tilting documented in this study can be clearly attributed to geodynamic and/or tectonic driving forces, likely related to migration of a forebulge.
Cite
Citations (33)
During the last 10 m.y., the Nanga Parbat Haramosh Massif in the northwestern Himalaya has been intruded by granitic magmas, has undergone high‐grade metamorphism and anatexis, and has been rapidly uplifted and denuded. As part of an ongoing project to understand the relationship between tectonism and petrologic processes, we have undertaken an isotopic study of the massif to determine the importance of hydrothermal activity during this recent metamorphism. Our studies show that both meteoric and magmatic hydrothermal systems have been active over the last 10 m.y. We suggest that the rapid uplift of the massif created a dual hydrothermal system, consisting of a near‐surface flow system dominated by meteoric water and a flow regime at deeper levels dominated by magmatic/metamorphic volatiles. Meteoric fluids derived from glaciers near the summit of Nanga Parbat were driven deep into the massif along the transpressional faults causing δ 18 O and δD depletions in the gneisses and marked oxygen isotopic disequilibrium between mineral pairs from the fault zones. The discharge of these meteoric fluids occurs in active hot springs that are found along the steep faults that border the massif. At deeper levels within the massif, infiltration of low δ 18 O magmatic fluids caused δ 18 O depletions in the gneisses within the migmatite zone. These low δ 18 O fluids were derived from the young (<4 Ma), relatively low δ 18 O granites (∼8‰c) that are found within the core of the massif. Geochronological evidence in the form of fission track and 40 Ar/ 39 Ar cooling ages and U/Pb ages on accessory minerals from the granites and gneisses provide a constraint on the timing of fluid flow in the surface outcrops we examined. Fluid infiltration in the migmatite zone rocks located along the Tato traverse was coeval with metamorphism, granite emplacement, and rapid denudation, in the interval 0.8–3.3 Ma. Finally, we infer from the presence of active hot springs that significant flow systems continue to be active at depth within the central portion of the Nanga Parbat‐Haramosh Massif.
Massif
Leucogranite
Migmatite
Cite
Citations (55)