logo
    Effect of model error representation in the Yellow and East China Sea modeling system based on the ensemble Kalman filter
    16
    Citation
    48
    Reference
    10
    Related Paper
    Citation Trend
    Abstract This study examines the performance of a hybrid ensemble-variational data assimilation system (E3DVar) that couples an ensemble Kalman filter (EnKF) with the three-dimensional variational data assimilation (3DVar) system for the Weather Research and Forecasting (WRF) Model. The performance of E3DVar and the component EnKF and 3DVar systems are compared over the eastern United States for June 2003. Conventional sounding and surface observations as well as data from wind profilers, aircraft and ships, and cloud-tracked winds from satellites, are assimilated every 6 h during the experiments, and forecasts are verified using standard sounding observations. Forecasts with 12- to 72-h lead times are found to have noticeably smaller root-mean-square errors when initialized with the E3DVar system, as opposed to the EnKF, especially for the 12-h wind and moisture fields. The E3DVar system demonstrates similar performance as an EnKF, while using less than half the number of ensemble members, and is less sensitive to the use of a multiphysics ensemble to account for model errors. The E3DVar system is also compared with a similar hybrid method that replaces the 3DVar component with the WRF four-dimensional variational data assimilation (4DVar) method (denoted E4DVar). The E4DVar method demonstrated considerable improvements over E3DVar for nearly all model levels and variables at the shorter forecast lead times (12–48 h), but the forecast accuracies of all three ensemble-based methods (EnKF, E3DVar, and E4DVar) converge to similar results at longer lead times (60–72 h). Nevertheless, all methods that used ensemble information produced considerably better forecasts than the two methods that relied solely on static background error covariance (i.e., 3DVar and 4DVar).
    Ensemble forecasting
    Citations (69)
    Recent progress in the particle filter has made it possible to use it for nonlinear or non-Gaussian data assimilation in high-dimensional systems, but a relatively large ensemble is still needed to outperform the ensemble Kalman filter (EnKF) in terms of accuracy. An alternative ensemble data assimilation method based on deep learning is presented, in which deep neural networks are locally embedded in the EnKF. This method is named the deep learning-ensemble Kalman filter (DL-EnKF). The DL-EnKF analysis ensemble is generated from the DL-EnKF analysis and the EnKF analysis deviation ensemble. The performance of the DL-EnKF is investigated through data assimilation experiments in both perfect and imperfect model scenarios using three versions of the Lorenz 96 model and a deterministic EnKF with an ensemble size of 10. Nonlinearity in data assimilation is controlled by changing the time interval between observations. Results demonstrate that despite being such a small ensemble, the DL-EnKF is superior to the EnKF in terms of accuracy in strongly nonlinear regimes and that the DL-EnKF analysis is more accurate than the output of deep learning because of positive feedback in assimilation cycles. Even if the target of training is an EnKF analysis with a large ensemble or a simulation by an imperfect model, the improvement introduced by the DL-EnKF is not very different from the case where the target of training is the true state.
    Ensemble Learning
    Ensemble forecasting
    Citations (11)
    Abstract The ensemble Kalman filter (EnKF) has been extensively applied in sequential soil moisture data assimilation to improve the land surface model performance and in turn weather forecast capability. Usually, the ensemble size of EnKF is determined with limited sensitivity experiments. Thus, the optimal ensemble size may have never been reached. In this work, based on a series of mathematical derivations, we demonstrate that the maximum efficiency of the EnKF for assimilating observations into the models could be reached when the ensemble size is set to 12. Simulation experiments are designed in this study under ensemble size cases 2, 5, 12, 30, 50, 100, and 300 to support the mathematical derivations. All the simulations are conducted from 1 June to 30 September 2012 over southeast USA (from −90°W, 30°N to −80°W, 40°N) at 25 km resolution. We found that the simulations are perfectly consistent with the mathematical derivation. This optical ensemble size may have theoretical implications on the implementation of EnKF in other sequential data assimilation problems.
    Assimilation (phonology)
    Ensemble average
    Ensemble forecasting
    Ensemble Learning
    Citations (46)
    Ensemble Kalman filter(EnKF) is used to assimilate the sounding data of a torrential rain process in July 2005 into the mesoscal model MM5.The experiment results show that under the assumption of perfect model,the analysis of EnKF assimilation is closer to the real observations,and the emsemble prediction with the EnKF assimilation is better than that without the EnKF assimilation and the single numerical prediction without adding perturbations.
    Assimilation (phonology)
    MM5
    Citations (0)
    Abstract Several NWP centers currently employ a variational data assimilation approach for initializing deterministic forecasts and a separate ensemble Kalman filter (EnKF) system both for initializing ensemble forecasts and for providing ensemble background error covariances for the deterministic system. This study describes a new approach for performing the data assimilation step within a perturbed-observation EnKF. In this approach, called VarEnKF, the analysis increment is computed with a variational data assimilation approach both for the ensemble mean and for all of the ensemble perturbations. To obtain a computationally efficient algorithm, a much simpler configuration is used for the ensemble perturbations, whereas the configuration used for the ensemble mean is similar to that used for the deterministic system. Numerous practical benefits may be realized by using a variational approach for both deterministic and ensemble prediction, including improved efficiency for the development and maintenance of the computer code. Also, the use of essentially the same data assimilation algorithm would likely reduce the amount of numerical experimentation required when making system changes, since their impacts in the two systems would be very similar. The variational approach enables the use of hybrid background error covariances and may also allow the assimilation of a larger volume of observations. Preliminary tests with the Canadian global 256-member system produced significantly improved ensemble forecasts with VarEnKF as compared with the current EnKF and at a comparable computational cost. These improvements resulted entirely from changes to the ensemble mean analysis increment calculation. Moreover, because each ensemble perturbation is updated independently, VarEnKF scales perfectly up to a very large number of processors.
    Initialization
    Ensemble forecasting
    Ensemble Learning
    Citations (28)
    Abstract An ensemble Kalman filter (EnKF) estimates the error statistics of a model forecast using an ensemble of model forecasts. One use of an EnKF is data assimilation, resulting in the creation of an increment to the first-guess field at the observation time. Another use of an EnKF is to propagate error statistics of a model forecast forward in time, such as is done for optimizing the location of adaptive observations. Combining these two uses of an ensemble Kalman filter, a “preemptive forecast” can be generated. In a preemptive forecast, the increment to the first-guess field is, using ensembles, propagated to some future time and added to the future control forecast, resulting in a new forecast. This new forecast requires no more time to produce than the time needed to run a data assimilation scheme, as no model integration is necessary. In an observing system simulation experiment (OSSE), a barotropic vorticity model was run to produce a 300-day “nature run.” The same model, run with a different vorticity forcing scheme, served as the forecast model. The model produced 24- and 48-h forecasts for each of the 300 days. The model was initialized every 24 h by assimilating observations of the nature run using a hybrid ensemble Kalman filter–three-dimensional variational data assimilation (3DVAR) scheme. In addition to the control forecast, a 64-member forecast ensemble was generated for each of the 300 days. Every 24 h, given a set of observations, the 64-member ensemble, and the control run, an EnKF was used to create 24-h preemptive forecasts. The preemptive forecasts were more accurate than the unmodified, original 48-h forecasts, though not quite as accurate as the 24-h forecast obtained from a new model integration initialized by assimilating the same observations as were used in the preemptive forecasts. The accuracy of the preemptive forecasts improved significantly when 1) the ensemble-based error statistics used by the EnKF were localized using a Schur product and 2) a model error term was included in the background error covariance matrices.
    Ensemble forecasting
    Quantitative precipitation forecast
    Forecast verification
    Forcing (mathematics)
    Citations (10)