logo
    Geochronological and Stable Isotope Evidence for Widespread Orogenic Gold Mineralization from a Deep-Seated Fluid Source at ca 2.65 Ga in the Laverton Gold Province, Western Australia
    71
    Citation
    59
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Many gold deposits in the Laverton greenstone belt, in the northeast of the Eastern Goldfields province of the Yilgarn craton, are located adjacent to, or hosted by, granitoids. This has led to controversy over whether the granitoids provided the auriferous fluids from which the deposits formed or were structural traps controlling the siting of the gold deposits. New regional-scale stable isotope data, combined with robust geochronology on several deposits, resolves this controversy in the Laverton greenstone belt. The median S, C, and O isotope compositions of ore and gangue minerals from nine different gold deposits in the Laverton greenstone belt fall in a very narrow range. The only exceptions to this are the more negative δ 34 S values of ore sulfides at the Jupiter gold deposit, which were most likely caused by preexisting highly oxidized host rocks and the more negative δ 13 C values of ore carbonate at deposits with reduced black shale host rocks. Redox conditions and mineralization temperatures for all gold deposits in the Laverton greenstone belt are broadly similar. Therefore, the lack of variation in the isotopic compositions of ore and gangue minerals is consistent with their deposition from a similar ore fluid. There is no convincing evidence to indicate that more than one ore fluid was involved in deposition of gold deposits within the Laverton greenstone belt, although the data do not uniquely define the source of the ore fluid (e.g., whether it was proximal or distal). SHRIMP U-Pb dating of gold-related monazite and xenotime provides a temporal framework for gold mineralization in the Laverton greenstone belt. Synmineralization phosphates have ages of 2650 ± 7 Ma at Mount Morgans, 2649 ± 11 Ma at Jubilee, 2657 ± 21 Ma at Jupiter, and probably 2653 ± 6 Ma at Granny Smith. The similarity in age of these four deposits, as well as previously published ages for the Wallaby (2650 ± 5 Ma) and Sunrise Dam and/or Cleo deposits (2654 ± 8 Ma), places three major constraints on the source of auriferous fluids in the Laverton greenstone belt. First, the Wallaby and, most likely, the Granny Smith gold deposits are not the same age as adjacent granitoids, ruling out the exposed granitic rocks as a proximal magmatic fluid source. Second, the broadly synchronous timing of gold mineralization on a camp scale provides evidence that the deposits have a similar genesis. Third, the range of ages of the gold deposits is not as great as that of the granitoids postulated to be their source. Magmatic activity that has been invoked as the source of ore fluids by various workers is related to several geochemically distinctive granitoid suites that are diachronous over several tens of millions of years in the Laverton greenstone belt and the wider Eastern Goldfields province. In contrast, the consistent age of gold mineralization in the Laverton greenstone belt supports a single fluid source, as implied by the isotope geochemistry. It is concluded that all studied deposits are orogenic gold deposits with a distal and deep source.
    Fluid inclusion isotopes are useful to the origins of ore fluids and dating mineralization.Considering the multiple ge nesis and generations of fluid inclusions,we should select the fluid inclusions for isotopes study which form at the same time with mineralization.This paper ma ke a review with particularly emphasis on Rb-Sr isotopes.
    Citations (0)
    In this paper, fluid inclusions and H-O-S isotope geochemistry of the Chambishi copper deposit in Zambia are studied. According to the fluid inclusion in quartz and H-O-S isotope characteristics, it is concluded that ore-forming hydrothermal fluid is derived from mantle source and crust source magma mingling, the cause of copper precipitation, sedimentary type sulfur layered mineralization are mainly from diagenetic sulfides and seawater sulfate. Sulfate is mainly reduced by thermochemical method. The hydrothermal vein mineralization of Chambishi copper deposit is closely related to the magmatic activity in the middle Neoproterozoic, and the sedimentary stratified mineralization is mainly related to the large-scale orogeny and regional metamorphism in the late Neoproterozoic.
    Ore genesis
    Isotope Geochemistry
    δ34S
    Orogeny
    An important diplogenetic mineralization event superimposed on pre-existing exhalation sediments in the Tongling area, Anhui province, was triggered by widespread granitic magmatism along the northeastern margin of the Yangtze Block during 140-135 Ma under extensional tectonic circumstances following the collision between the North China and Yangtze blocks. The main orebodies of the Dongguashan copper deposit, a typical diplogenetic stratified deposit among many polymetallic ore deposits in China, are hosted by strata between Upper Devonian sandstone and Carboniferous limestone, and its mineralization was genetically related to the Qingshanjiao intrusive. The Rb-Sr isotopic isochron of the Qingshanjiao intrusive yields an age of about 136.5±1.4 Ma. The ore-forming fluid reflected by the inclusion fluid in quartz veins is characterized by high temperature and high salinity, and its age was also determined by Rb-Sr isotope dating as 134±11 Ma. Oxygen and hydrogen isotope composition data suggest that the ore-forming fluid was derived mainly from magmatism. By integrating these isotopic dating data, characteristics of fluid inclusions and the geology of the deposit, the mineralization of the Dongguashan copper deposit is divided into two stages. First, a stratiform sedimentary deposit or protore layer formed in the Late Devonian to the Early Carboniferous, while in the second stage the pre-existing protore was superimposed by hydrothermal fluid that was derived from the Yanshanian magmatic activities occurring around 135 Ma ago. This two-stage mineralization formed the Dongguashan statiform copper deposit.Associated porphyry mineralization found in the bottom of and in surrounding intrusive rocks of the orebodies might have occurred in the same period as a second-stage mineralization of this deposit.
    Devonian
    Radiometric dating
    δ34S
    Late Devonian extinction
    Citations (0)
    Abstract An important diplogenetic mineralization event superimposed on pre-existing exhalation sediments in the Tongling area, Anhui province, was triggered by widespread granitic magmatism along the northeastern margin of the Yangtze Block during 140–135 Ma under extensional tectonic circumstances following the collision between the North China and Yangtze blocks. The main orebodies of the Dongguashan copper deposit, a typical diplogenetic stratified deposit among many polymetallic ore deposits in China, are hosted by strata between Upper Devonian sandstone and Carboniferous limestone, and its mineralization was genetically related to the Qingshanjiao intrusive. The Rb-Sr isotopic isochron of the Qingshanjiao intrusive yields an age of about 136.5±1.4 Ma. The ore-forming fluid reflected by the inclusion fluid in quartz veins is characterized by high temperature and high salinity, and its age was also determined by Rb-Sr isotope dating as 134±11 Ma. Oxygen and hydrogen isotope composition data suggest that the ore-forming fluid was derived mainly from magmatism. By integrating these isotopic dating data, characteristics of fluid inclusions and the geology of the deposit, the mineralization of the Dongguashan copper deposit is divided into two stages. First, a stratiform sedimentary deposit or protore layer formed in the Late Devonian to the Early Carboniferous, while in the second stage the pre-existing protore was superimposed by hydrothermal fluid that was derived from the Yanshanian magmatic activities occurring around 135 Ma ago. This two-stage mineralization formed the Dongguashan statiform copper deposit. Associated "porphyry" mineralization found in the bottom of and in surrounding intrusive rocks of the orebodies might have occurred in the same period as a second-stage mineralization of this deposit.
    Devonian
    δ34S
    Radiometric dating
    Late Devonian extinction
    Abstract The G aogangshan M o deposit, located in the northern part of the L esser X ing'an R ange (the eastern part of the X ing'an– M ongolia O rogenic B elt), is one of the newly discovered M o deposits in northeast C hina. Ore bodies occur in the granite and are generally in vein and stockwork forms. Major metallic minerals in the ore include pyrite and molybdenite. The styles of mineralization are disseminated, veinlet–disseminated, and veinlet. The major types of wall–rock alteration are silicification–potassic alteration, phyllic alteration and propylitization. Fluid inclusion analyses indicate that the ore‐forming fluid during the major mineralization stage is an H 2 O – NaCl – CO 2 system, with wide homogenization temperature and salinity ranges. The abundant CO 2 –rich and coexisting halite–bearing fluid inclusion assemblages in the main stage of mineralization highlight the significance of intensive fluid boiling for porphyry M o mineralization. Comprehensive study of the ore‐forming conditions, geological features of the deposit, micro‐thermometric analysis of fluid inclusions and comparison of the G aogangshan deposit with other typical porphyry deposits leads to the conclusion that the deposit is a porphyry type. We obtained a weighted mean age of the molybdenite deposit at G aogangshan of 250.7 ± 1.8 Ma. The isotopic dating results indicate that the G aogangshan deposit was formed in the P ermo–Triassic, which is the earliest M o–only deposit in northeast C hina. The formation of the G aogangshan M o deposit may be related to the extension and break–up of the S ongnen B lock and J iamusi B lock in the P ermo– T riassic.
    Molybdenite
    Stockwork
    Halite
    Sericite
    Ore genesis
    Citations (15)