Groundwater‐controlled valley networks and the decline of surface runoff on early Mars
96
Citation
77
Reference
10
Related Paper
Citation Trend
Abstract:
Fluvial erosion on early Mars was dominated by valley networks created through a combination of groundwater processes and surface runoff. A reduced greenhouse effect due to CO 2 loss, together with a declining geothermal heat flux, promoted the growth of a cryosphere and a Hesperian hydrologic regime dominated by outflow channel formation. We test the hypothesis that the transition from valley network to outflow channel formation was preceded by a more subtle evolution characterized by a weakening of surface runoff, leaving groundwater processes as the dominant, final source of valley network erosion. Our hypothesis, supported by a terrestrial analog in the Atacama desert of Chile, is related to the groundwater sapping reactivation hypothesis for densely dissecting highland valley networks on Mars suggested by Baker and Partridge in 1986 and focuses on the age analysis of large, sparsely dissecting valley networks such as Nanedi Valles, Nirgal Vallis, valleys in fretted terrain, and tributaries of outflow channels and Valles Marineris chasmata. We find that these features are consistently late Noachian to Hesperian in age, younger than Noachian densely dissecting dendritic valley networks in the southern highlands. In the Tharsis region the observation of dense and sparse valley network morphologies on Hesperian terrain suggests that while surface runoff gave way to groundwater processes consistent with our hypothesis, the transition may have occurred later than elsewhere on the planet. The volcanic nature of Tharsis suggests that geothermal heat and volatile production led to episodically higher volumes of surface runoff in this region during the Hesperian.Keywords:
Hesperian
Noachian
Tharsis
On Earth, the characteristics of fluvial erosion depends on two main parameters: climate (rain fall) and tectonic history. Mars is a planet that experienced erosion driven by liquid water but its geodynamics are vastly different from Earth’s. Mars therefore represents a unique opportunity to understand how landscape evolution differs on a planet with a “stagnant lid” tectonic regime. The formation of Tharsis dome, a vast volcanic province, during the early history of Mars represented a major magmato-tectonic upheaval for the planet. Over several hundreds of million years, the Tharsis region experienced large scale magmatic intrusions, crustal deformation and effusive volcanism resulting in crustal growth, dynamic uplift and true polar wander (TPW) that accounts for the present location of the Tharsis dome at the equator. This event occurred during a time when Mars had an active water cycle, although the total mass and relative proportion of ice, liquid water and vapor is not well constrained. The uplift and subsequent true polar wander of Mars have affected drainage systems across the planet with many being abandoned or modified due to the variable uplift or subsidence as a lithospheric response to the regional upheaval in the Tharsis region (load on the elastic lithosphere) and TPW. Here we present results from numerical simulations performed using a stream power law algorithm on Mars during the Noachian/Hesperian growth of Tharsis to assess how the patterns of erosion rate are affected by the distribution of atmospheric moisture and flow routing in an attempt to reproduce the observed distribution of valley networks and their geometry. For this, we adapted and used the fully-implicit and O(n)-complexity FastScape algorithm to perform the simulation at the planetary scale. The aims of this work are to quantify the effect of Tharsis dome formation on fluvial systems during the Noachian and early Hesperian, and to establish a first-order erosion rate for this period. This study could help to constrain how much water was cycling on Mars at this time.
Hesperian
Tharsis
Noachian
geodynamics
Lithospheric flexure
Hydrosphere
Cite
Citations (0)
Hesperian
Noachian
Tharsis
Obduction
Cite
Citations (59)
Abstract Most fluvial and lacustrine landforms on Mars are thought to be old and have formed more than ~3.8 Gyr ago, in the Noachian period. After a major climatic transition, surface liquid water became less abundant and finally disappeared almost completely. Recent work has shown that observational evidence for Hesperian and Amazonian aqueous processes is more common than previously recognized, but their nature is poorly understood. Moreover, it is not clear how the paleoclimate of Mars can be constrained by this activity. Here we report our investigation of a population of deltas around the ancient impact basin Chryse Planitia. To test whether the results are globally applicable, we also studied selected deltas with similar morphologies in the eastern hemisphere and found that the results are consistent. We compared the morphology of deltas, feeder channels, and receiving lakes, dated deltas by crater counting and searched for alteration minerals in hyperspectral images. The valleys and associated late‐stage deltas were formed by short‐lived aqueous processes, as suggested by their morphology and the general lack of associated aqueous alteration minerals. The likely source of water was neither widespread precipitation nor a regionally connected groundwater aquifer, but water mobilized locally from the cryosphere. Delta formation in our study areas occurred from the Early Hesperian to the Late Amazonian and did not require sustained periods of global climatic conditions favoring widespread precipitation. Liquid surface water has been locally present on Mars even after the Noachian, although only episodically, for transient intervals, and widely separated in space.
Noachian
Hesperian
Cite
Citations (84)
Valley networks, regional drainage patterns suggesting liquid water stability at the surface, are confined to early in the history of Mars (the Noachian/Hesperian boundary and before), prior to a major climate transition to the hyperarid cold conditions of the Amazonian. Several later fluvial valley systems have been documented in specific Hesperian and Early Amazonian environments, and are thought to have formed due to local conditions. Here we describe fluvial valley systems within Lyot crater that have the youngest well‐constrained age reported to date (Middle or Late Amazonian) for systems of this size (tens of km). These valleys are linked to melting of near‐surface ice‐rich units, extend up to ∼50 km in length, follow topographic gradients, and deposit fans. The interior of Lyot crater is an optimal micro‐environment, since its low elevation leads to high surface pressure, and temperature conditions at its location in the northern mid‐latitudes are sufficient for melting during periods of high‐obliquity. This micro‐environment in Lyot apparently allowed melting of surface ice and the formation of the youngest fluvial valley systems of this scale yet observed on Mars.
Hesperian
Noachian
Cite
Citations (72)