logo
    Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia
    442
    Citation
    83
    Reference
    10
    Related Paper
    Citation Trend
    Abstract Extension within a continental back‐arc basin initiates within continental rather than oceanic lithosphere, and the geochemical characteristics of magmatic rocks within continental back‐arcs are poorly understood relative to their intraoceanic counterparts. Here, we compile published geochemical data from five exemplar modern continental back‐arc basins—the Okinawa Trough, Bransfield Strait, Tyrrhenian Sea, Patagonia plateau, and Aegean Sea/Western Anatolia—to establish a geochemical framework for continental back‐arc magmatism. This analysis shows that continental back‐arcs yield geochemical signatures more similar to arc magmatism than intraoceanic back‐arcs do. We apply this framework to published data for Triassic‐Jurassic magmatic rocks from the Caucasus arc system, which includes a relict continental back‐arc, the Caucasus Basin, that opened during the Jurassic and for which the causal mechanism of formation remains debated. Our analysis of 40 Ar/ 39 Ar and U‐Pb ages indicates Permian‐Triassic arc magmatism from ∼260 to 220 Ma due to subduction beneath the Greater Caucasus and Scythian Platform. Late Triassic (∼220–210 Ma) collision of the Iranian block with Laurasia likely induced trench retreat in the Caucasus region and led to migration of the Caucasus arc and opening of the Caucasus Basin. This activity was followed by Jurassic arc magmatism in the Lesser Caucasus from ∼180 to 140 Ma and back‐arc spreading in the Caucasus Basin from ∼180 to 160 Ma. Trace element and Sr‐Nd isotopic data for magmatic rocks indicate that Caucasus Basin magmatism is comparable to modern continental back‐arcs and that the source to the Lesser Caucasus arc became more enriched at ∼160 Ma, likely from the cessation of back‐arc spreading.
    Back-arc basin
    Continental arc
    Continental Margin
    Tethys Ocean
    continental collision
    Island arc
    Citations (18)
    We investigate how subduction may be triggered by continental crust extension at a continental margin. The large topography contrast between continental and oceanic domains drives the spreading of continental crust over oceanic basement. Subduction requires the oceanic plate to get submerged in mantle, so that negative buoyancy forces may take over and drive further descent. This is promoted by two mechanisms. Loading by continental crust bends the oceanic plate downwards. Extension in the continental domain induces crustal thinning, which acts to raise mantle above the oceanic plate. In this model, the width of the continental region undergoing extension is an important control parameter. The main physical controls are illustrated by laboratory experiments and simple theory for elastic flexure coupled to viscous crustal spreading. Three governing dimensionless parameters are identified. One involves the poorly constrained oceanic plate buoyancy. We find that the oceanic plate can be thrust to depths larger than 40 km even if it is buoyant, enabling metamorphic reactions and density increase in the oceanic crust. Another parameter is the ratio between the width of the continental extension region and the flexural parameter for the oceanic plate. Initiating subduction is easier if the continent thins over a short lateral distance or if the oceanic plate is strong. The third important parameter is the ratio of oceanic plate thickness to initial continental crust thickness, such that a weak plate and a thick crust do not favour subduction. Thus, the change from a passive to an active margin depends on the local characteristics of the continental crust and is not determined solely by the age and properties of the oceanic lithosphere. It is shown that the spreading of continental crust induces uplift of the margin as the adjacent seafloor subsides. Evidence for the emplacement of continental crust over oceanic basement at passive margins is reviewed.
    Convergent boundary
    Continental Margin
    Eclogitization
    Adakite
    Passive margin
    Underplating
    We investigate the temporal record of magmatism in the Fiordland sector of the Median Batholith (New Zealand) with the goal of evaluating models for cyclic and episodic patterns of magmatism and deformation in continental arcs. We compare 20 U-Pb zircon ages from >2300 km2 of Mesozoic lower and middle crust of the Western Fiordland Orthogneiss to existing data from the Median Batholith to: (1) document the tempo of arc construction, (2) estimate rates of magmatic addition at various depths during arc construction, and (3) evaluate the role of cyclical feedbacks between magmatism and deformation during high and low magma addition rate events. Results from the Western Fiordland Orthogneiss indicate that the oldest dates are distributed in northern and southern extremities: the Worsley Pluton (123–121 Ma), eastern McKerr Intrusives (128–120 Ma), and Breaksea Orthogneiss (123 Ma). Dates within the interior of the Western Fiordland Orthogneiss (Misty and Malaspina Plutons, western McKerr Intrusives) primarily range from 118 to 115 Ma and signify a major flux of mafic to intermediate magmatism during which nearly 70% of the arc root was emplaced during a brief, ∼3 m.y., interval. The spatial distribution of dates reveals an inward-focusing, arc-parallel younging of magmatism within the Western Fiordland Orthogneiss during peak magmatic activity. Coupled with existing data from the wider Median Batholith, our data show that Mesozoic construction of the Median Batholith involved at least two high-flux magmatic events: a surge of low-Sr/Y plutonism in the Darran Suite from ca. 147 to 136 Ma, and a terminal surge of high-Sr/Y magmatism in the Separation Point Suite from 128 to 114 Ma, shortly before extensional collapse of the Zealandia Cordillera at 108–106 Ma. Separation Point Suite magmatism occurred at all structural levels, but was concentrated in the lower crust, where nearly 50% of the crust consists of Cretaceous arc-related plutonic rocks. Existing isotopic data suggest that the flare-up of high-Sr/Y magmatism was primarily sourced from the underlying mantle, indicating an externally triggered, dynamic mantle process for triggering the Zealandia high–magma addition rate event, with only limited contributions from upper plate materials.
    Batholith
    Back-arc basin
    Continental arc
    Plutonism
    Citations (61)