Relationship between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolite
180
Citation
24
Reference
10
Related Paper
Citation Trend
Abstract:
Velocities and Q values of P and S waves as functions of pressure and temperature (at 100 and 600 MPa) are presented for a serpentinite and an amphibolite. Both rocks exhibit a strong lattice preferred orientation (LPO) of the major mineral phases antigorite and hornblende, respectively. Velocities and Q values increase with pressure; the rate of increase is different in the three orthogonal directions (normal and parallel to foliation and lineation) and closely related to progressive closure of microcracks. Increasing temperature decreases velocities and Q values only slightly as long as thermal cracking is prevented by the applied confining pressure. Substantial anisotropy of velocities and Q in P and S waves is observed in both rocks but is found to be different in origin. Anisotropy of P and S wave velocities is highest at low pressure and basically caused by constructive interference of effects related to oriented microcracks and to the LPO of major minerals. Increasing confining pressure decreases velocity anisotropy at a smaller and smaller rate. The residual anisotropy of P and S wave velocities (shear wave splitting) at high confining pressure is mainly a result of preferred mineral orientation. By contrast, anisotropy of Q is very low at low confining pressure and markedly enhanced as pressure is increased. At high confining pressure, substantial anisotropy of Q in P waves is apparent but reversed from that of P wave velocities: Q p is highest in the direction normal to the foliation plane whereas V p (and V S ) is lowest in this direction. The generation of a pronounced anisotropy of Q p by increasing pressure is due to a directionally dependent increase of contact areas on the oriented grain boundaries of the platy minerals defining the foliation. The increase of Q with pressure in the direction normal to foliation is mainly caused by the decrease of energy loss due to compressive strain relative to shear strain. The reverse is true for the X and Y directions (serpentinite) and X direction (amphibolite) parallel to the foliation plane.Keywords:
Overburden pressure
Seismic anisotropy
Shear wave splitting
Lineation
Seismic anisotropy
Shear wave splitting
Cite
Citations (4)
Modelling of seismic anisotropy in complex geodynamic environments is common. However the sensitivity of predicted seismic anisotropy and shear‐wave splitting to mineral parameters is sometimes overlooked. We use a simple ocean ridge corner flow solution to investigate the effect of varying mineral parameters on the generation of seismic anisotropy and whether these differences can be detected by the predicted shear‐wave splitting. We find that seismic anisotropy and shear wave splitting predicted using LPO theory is sensitive to mineral input parameters, such as grain boundary mobility, grain boundary sliding and mineral composition, however experimental constraints greatly reduce the range of predicted values. Predicted shear‐wave splitting for a range of mineral parameters are consistent with observations at mid‐ocean ridges. Although differences are seen in the predicted shear‐splitting for different mineral parameters they are probably too small to detect in observations and hence will not give us new insights in to variation in mantle mineral properties.
Seismic anisotropy
Shear wave splitting
Shear waves
S-wave
Cite
Citations (11)
The dependence of seismic wavespeeds on propagation or polarization direction, called seismic anisotropy, is a relatively direct indicator of mantle deformation and flow. Mantle seismic anisotropy is often inferred from measurements of shear-wave splitting. A number of standard techniques to measure shear-wave splitting have been applied globally; for example, *KS splitting is often used to measure upper mantle anisotropy. In order to obtain robust constraints on anisotropic geometry, it is necessary to sample seismic anisotropy from different directions, ideally using different seismic phases with different incidence angles. However, many standard analysis techniques can only be applied for certain epicentral distances and source-receiver ge-ometries. In this work, we apply a “wavefield differencing” approach to (systematically) understand what parts of the seismic wavefield are most affected by seismic anisotropy in the mantle. We systematically analyze differences between synthetic global wavefields calculated for isotropic and anisotropic input models, incorporating seismic anisotropy at different depths. Our results confirm that the seismic phases that are commonly used in splitting techniques are indeed strongly influenced by mantle anisotropy. However, we also identify less commonly used phases whose waveforms reflect the effects of anisotropy. For example, PS is strongly affected by upper mantle seismic anisotropy. We show that PS can be used to fill in gaps in global coverage in shear wave splitting datasets (for example, beneath ocean basins). We find that PcS is also a promising phase, and present a proof-of-concept example of PcS splitting analysis across the contiguous United States using an array processing approach. Because PcS is recorded at at much shorter distances than *KS phases, PcS splitting can therefore fill in gaps in backazimuthal coverage. The insights provided by a wavefield differencing approach provide promising new strategies for improving our ability to detect and characterize seismic anisotropy in the mantle.
Seismic anisotropy
Shear wave splitting
Shear waves
Vertical seismic profile
Cite
Citations (0)
Shear wave splitting
Seismic anisotropy
Slab
S-wave
Cite
Citations (70)
We examine upper mantle anisotropy across the Hawaiian Swell by analyzing shear wave splitting of teleseismic SKS waves recorded by the PLUME broadband land and ocean bottom seismometer deployments. Mantle anisotropy beneath the oceans is often attributed to flow‐induced lattice‐preferred orientation of olivine. Splitting observations may reflect a combination of both fossil lithospheric anisotropy and anisotropy due to present‐day asthenospheric flow, and here we address the question whether splitting provides diagnostic information on possible asthenospheric plume flow at Hawaii. We find that the splitting fast directions are coherent and predominantly parallel to the fossil spreading direction, suggesting that shear wave splitting dominantly reflects fossil lithospheric anisotropy. The signature of anisotropy from asthenospheric flow is more subtle, although it could add some perturbation to lithospheric splitting. The measured delay times are typically 1 s or less, although a few stations display larger splitting delays of 1–2 s. The variability in the delay times across the different stations indicates differences in the degree of anisotropy or in the thickness of the anisotropic layer or in the effect of multilayer anisotropy. Regions with smaller splitting times may have experienced processes that modified the lithosphere and partially erased the fossil anisotropy; alternatively, asthenospheric splitting may either constructively add to or destructively subtract from lithospheric splitting to produce the observed variability in delay times.
Shear wave splitting
Seismic anisotropy
Seismometer
Mantle plume
Cite
Citations (29)
Shear wave splitting is a robust tool to infer the direction and strength of seismic anisotropy in the lithosphere and underlying asthenosphere. Previous shear wave splitting studies in the Afar Depression and adjacent areas concluded that either Precambrian sutures or vertical magmatic dikes are mostly responsible for the observed anisotropy. Here we report results of a systematic analysis of teleseismic shear wave splitting using all the available broadband seismic data recorded in the Afar Depression, Main Ethiopian Rift (MER), and Ethiopian Plateau. We found that while the ∼450 measurements on the Ethiopian Plateau and in the MER show insignificant azimuthal variations with MER‐parallel fast directions and thus can be explained by a single layer of anisotropy, the ∼150 measurements in the Afar Depression reveal a systematic azimuthal dependence of splitting parameters with a π /2 periodicity, suggesting a two‐layer model of anisotropy. The top layer is characterized by a relatively small (0.65 s) splitting delay time and a WNW fast direction that can be attributed to magmatic dikes within the lithosphere, and the lower layer has a larger (2.0 s) delay time and a NE fast direction. Using the spatial coherency of the splitting parameters obtained in the MER and on the Ethiopian Plateau, we estimated that the optimal depth of the source of anisotropy is centered at about 300 km, i.e., in the asthenosphere. The spatial and azimuthal variations of the observed anisotropy can best be explained by a NE directed flow in the asthenosphere beneath the MER and the Afar Depression.
Shear wave splitting
Asthenosphere
Seismic anisotropy
Dike
Cite
Citations (78)
We developed a three‐dimensional (3D) shear‐wave splitting tomography method to image the spatial anisotropy distribution by back projecting shear wave splitting delay times along ray paths derived from a 3D shear velocity model, assuming the delay times are accumulated along the ray paths. The local strength of the anisotropy is indicated by a parameter of anisotropy percentage, K. Using the shear‐wave splitting delay times for 575 earthquakes measured at PASO and HRSN stations, we imaged a detailed 3D anisotropy percentage model around the San Andreas Fault Observatory at Depth (SAFOD). The anisotropy percentage model shows strong heterogeneities, consistent with the strong spatial variations in both measured delay times and fast polarization directions. The San Andreas Fault (SAF) zone is highly anisotropic down to a depth of ∼4 km and then becomes less anisotropic at greater depths. Outside the fault zone, the highly anisotropic zone extends as deep as ∼7 km, consistent with the systematic depth dependence of the average time delays. To the southwest of the SAF, the Salinian granitic block shows relatively strong anisotropic anomalies that are presumably caused by aligned microcracks consistent with the direction of the regional maximum compressive horizontal stress. To the northeast of the fault zone, a strong anisotropic anomaly between depths ∼2 and ∼4 km corresponds to a serpentinite body sandwiched between Franciscan rocks.
Shear wave splitting
Seismic anisotropy
Cite
Citations (45)
Abstract Anisotropy in the Earth's upper mantle is a signature of past and present deformation. Here we present a new data set of ∼50,000 uniformly processed SKS shear wave splitting measurements that probe upper mantle anisotropy beneath seismic stations in the frequency band 0.02–0.1 Hz. The data set consists of measurements obtained at ∼2000 seismic stations from ∼2000 events. We identify several stations characterized by an apparent absence of shear wave splitting (so‐called “null stations”). Station‐averaged measurements are obtained by stacking shear wave splitting error surfaces. The stacked data set shows excellent agreement with a compilation of previous SKS measurements. The average amount of splitting beneath seismic stations (after error surface stacking) is 0.8 s, slightly lower than that found previously by vectorial averaging of non‐null measurement splitting parameters. The data set disagrees, however, with an azimuthally anisotropic surface wave tomography model (DKP2005), suggesting that caution should be exercised when using such models for geodynamic interpretation, especially in continental regions. Studying our data set in detail, we find evidence that flow in the asthenosphere exerts partial control over SKS splitting in orogenic regions globally. In the active orogenic environment of the western USA, where we have the densest coverage, our data suggest that shallow asthenospheric flow is guided by a wall of thick lithosphere to the east.
Shear wave splitting
Seismic anisotropy
Asthenosphere
Seismic array
Passive seismic
Cite
Citations (32)
This special issue of Annals of Geophysics “Seismic anisotropy and shear-wave splitting: Achievements and perspectives” originates from a session (S10) of the 37th General assembly of the European Seismological commission ESC 2021 Conference which was planned to take place on 21 September 2021, in Corfu Greece, but due to the Covid19 pandemic was Virtual. The main theme of the session and of this special issue was the crucial role of seismic anisotropy in investigating the Earth’s interior from the upper crust to the inner core. Shear-wave splitting, one of the most effective ways to study seismic anisotropy, can identify the properties and the geodynamics of the upper mantle, and identify the presence of fluid-saturated microcracks, oriented according to the stress regime, in the upper crust. Azimuthal anisotropy and radial anisotropy can be assessed from earthquake or ambient noise recordings to detect the seismic layered features and to rebuild the 3D seismic structure
Shear wave splitting
Seismic anisotropy
Cite
Citations (0)
SUMMARY Determinations of seismic anisotropy, or the dependence of seismic wave velocities on the polarization or propagation direction of the wave, can allow for inferences on the style of deformation and the patterns of flow in the Earth’s interior. While it is relatively straightforward to resolve seismic anisotropy in the uppermost mantle directly beneath a seismic station, measurements of deep mantle anisotropy are more challenging. This is due in large part to the fact that measurements of anisotropy in the deep mantle are typically blurred by the potential influence of upper mantle and/or crustal anisotropy beneath a seismic station. Several shear wave splitting techniques are commonly used that attempt resolve seismic anisotropy in deep mantle by considering the presence of multiple anisotropic layers along a raypath. Examples include source-side S-wave splitting, which is used to characterize anisotropy in the deep upper mantle and mantle transition zone beneath subduction zones, and differential S-ScS and differential SKS-SKKS splitting, which are used to study anisotropy in the D″ layer at the base of the mantle. Each of these methods has a series of assumptions built into them that allow for the consideration of multiple regions of anisotropy. In this work, we systematically assess the accuracy of these assumptions. To do this, we conduct global wavefield modelling using the spectral element solver AxiSEM3D. We compute synthetic seismograms for earth models that include seismic anisotropy at the periods relevant for shear wave splitting measurements (down to 5 s). We apply shear wave splitting algorithms to our synthetic seismograms and analyse whether the assumptions that underpin common measurement techniques are adequate, and whether these techniques can correctly resolve the anisotropy incorporated in our models. Our simulations reveal some inaccuracies and limitations of reliability in various methods. Specifically, explicit corrections for upper mantle anisotropy, which are often used in source-side direct S splitting and S-ScS differential splitting, are typically reliable for the fast polarization direction ϕ but not always for the time lag δt, and their accuracy depends on the details of the upper mantle elastic tensor. We find that several of the assumptions that underpin the S-ScS differential splitting technique are inaccurate under certain conditions, and we suggest modifications to traditional S-ScS differential splitting approaches that lead to improved reliability. We investigate the reliability of differential SKS-SKKS splitting intensity measurements as an indicator for lowermost mantle anisotropy and find that the assumptions built into the splitting intensity formula can break down for strong splitting cases. We suggest some guidelines to ensure the accuracy of SKS-SKKS splitting intensity comparisons that are often used to infer lowermost mantle anisotropy. Finally, we suggest a new strategy to detect lowermost mantle anisotropy which does not rely on explicit upper mantle corrections and use this method to analyse the lowermost mantle beneath east Asia.
Shear wave splitting
Seismic anisotropy
Core–mantle boundary
Shear waves
Seismogram
Cite
Citations (27)