logo
    Cretaceous to early Paleogene tectonic evolution of the northern Central Andes (0–18°S) and its relations to geodynamics
    103
    Citation
    57
    Reference
    10
    Related Paper
    Citation Trend
    Keywords:
    Forearc
    geodynamics
    Paleogene
    Convergent boundary
    Back-arc basin
    Continental Margin
    Abstract The well-characterized Sierra Nevada magmatic arc offers an unparalleled opportunity to improve our understanding of continental arc magmatism, but present bedrock exposure provides an incomplete record that is dominated by Cretaceous plutons, making it challenging to decipher details of older magmatism and the dynamic interplay between plutonism and volcanism. Moreover, the forearc detrital record includes abundant zircon formed during apparent magmatic lulls, suggesting that understanding the long-term history of arc magmatism requires integrating plutonic, volcanic, and detrital records. We present trace-element geochemistry of detrital zircon grains from the Great Valley forearc basin to survey Sierra Nevadan arc magmatism through Mesozoic time. We analyzed 257 previously dated detrital zircon grains from seven sandstone samples of volcanogenic, arkosic, and mixed compositions deposited ca. 145–80 Ma along the length of the forearc basin. Detrital zircon trace-element geochemistry is largely consistent with continental arc derivation and shows similar geochemical ranges between samples, regardless of location along strike of the forearc basin, depositional age, or sandstone composition. Comparison of zircon trace-element data from the forearc, arc, and retroarc regions revealed geochemical asymmetry across the arc that was persistent through time and demonstrated that forearc and retroarc basins sampled different parts of the arc and therefore recorded different magmatic histories. In addition, we identified a minor group of Jurassic detrital zircon grains with oceanic geochemical signatures that may have provenance in the Coast Range ophiolite. Taken together, these results suggest that the forearc detrital zircon data set reveals information different from that gleaned from the arc itself and that zircon compositions can help to identify and differentiate geochemically distinct parts of continental arc systems. Our results highlight the importance of integrating multiple proxies to fully document arc magmatism, demonstrating that detrital zircon geochemical data can enhance understanding of a well-characterized arc, and these data may prove an effective means by which to survey an arc that is inaccessible and therefore poorly characterized.
    Forearc
    Back-arc basin
    Continental arc
    Trace element
    Citations (16)
    The Pacific plate obliquely converges with the Australian plate at latitude 39°50′S along the Hikurangi margin off the east coast of the North Island of New Zealand. An extensive and youthful subaerially exposed forearc on the east coast of the North Island in the Hawke's Bay area provides the opportunity to document contemporaneous forearc deformation in this obliquely convergent margin setting. Geologic mapping and analysis of strain at both mesoscale and megascale indicates that strain is partitioning into domains of extension, contraction, and strike‐slip. The domains are elongate and trend parallel to the margin. Measurements of net shortening and transcurrent slip in the forearc show that the obliquely convergent motion is transferred across the plate interface. Deformation rates calculated for the past 1–2 m.y. for structures in all six forearc domains account for 50–70% of the margin‐parallel motion required by Pacific‐Australian plate convergence and about 6% of the plate motion perpendicular to the plate boundary. At the surface in the forearc, this obliquely convergent motion is manifest not by transpressional faults but rather by paired structural domains that consist of a strike‐slip fault zone and an accompanying contractional fault‐and‐fold zone on the trenchward side. There are two such transcurrent faulting‐and‐contraction couplets, one where the backstop daylights at the arcward edge of the forearc and another couplet trenchward of a relatively undisturbed forearc basin. The small amount of shortening, relative to strike‐slip, in the onshore part of the forearc suggests that shortening perpendicular to the plate boundary may be concentrated offshore and that most of the component of plate motion perpendicular to the plate boundary may be accommodated by slip along the subduction zone megathrust.
    Forearc
    Strain partitioning
    Convergent boundary
    Pacific Plate
    Citations (105)
    Tectonic erosion along convergent plate boundaries, whereby removal of upper plate material along the subduction zone interface drives kilometer‐scale outer forearc subsidence, has been purported to explain the evolution of nearly half the world's subduction margins, including part of the history of northeast Japan. Here, we evaluate the role of plate boundary dynamics in driving forearc subsidence in northeastern Japan. A synthesis of newly updated analyses of outer forearc subsidence, the timing and kinematics of upper plate deformation, and the history of plate convergence along the Japan trench demonstrate that the onset of rapid fore‐arc tectonic subsidence is contemporaneous with upper plate extension during the opening of the Sea of Japan and with an acceleration in convergence rate at the trench. In Plio‐Quaternary time, relative uplift of the outer forearc is contemporaneous with contraction across the arc and a decrease in plate convergence rate. The coincidence of these changes across the forearc, arc, backarc system appears to require an explanation at the scale of the entire plate boundary. Similar observations along other western Pacific margins suggest that correlations between forearc subsidence and major changes in plate kinematics are the rule, rather than the exception. We suggest that a significant component of forearc subsidence at the northeast Japan margin is not the consequence of basal tectonic erosion, but instead reflects dynamic changes in plate boundary geometry driven by temporal variations in plate kinematics. If correct, this model requires a reconsideration of the mass balance and crustal recycling of continental crust at nonaccretionary margins.
    Forearc
    Convergent boundary
    Citations (28)
    For the Central Valley of northern Chile (Antofagasta region), a paleomagnetic analysis of data from 108 sites, mainly in Mesozoic and Paleogene volcanic rocks, has yielded stable remanent magnetization directions for 86 sites. From these data, we infer clockwise tectonic rotations of up to 65° within the forearc domain of the central Andes. The apparent relationship between tectonic rotations and structural trends suggests that rotations occurred mainly during the Incaic orogenic event of Eocene–early Oligocene age. A few paleomagnetic results obtained in Neogene rocks do not show evidence of clockwise rotations. Hence the development of the Bolivian orocline during late Neogene time cannot be explained by simple bending of the whole margin. These results demonstrate that tectonic rotations within the forearc and pre‐Cordillera are key elements of early Andean deformation, which should be taken into account by kinematic models of mountain building in the central Andes.
    Forearc
    Paleogene
    Clockwise
    Neogene
    Citations (58)
    West Sumatra forearc basin lies in the western part of Sumatra island extending from the north to the south. The forearc basin is considered not having potential to produce hydrocarbon due to its low geothermal gradient. However, indications of hydrocarbons were found in Bengkulu A-1X and Arwana-1 wells, which suggest that the Bengkulu forearc basin area has matured source rocks. The Paleogene syn-extensional sediments which are expected to be the main source rock are still under explored, especially those in the outer forearc region. Furthermore, in the Sibolga basin, the Paleogene sediments have not been well explored. Some wells were only drilled up dip of the Paleogene graben and did not penetrate the deeper Paleogene sediments. In addition, Sumatra's forearc region can also have unconventional play potential such as gas hydrate.
    Forearc
    Paleogene
    Prospectivity mapping
    The Andaman Sea has developed as the result of highly oblique subduction at the western Sunda Trench, leading to partitioning of convergence into trench-perpendicular and trench-parallel components and the formation of a northward-moving sliver plate to accommodate the trench parallel motion. The Andaman forearc contains structures resulting from both components of motion. The main elements of the forearc are the accretionary prism and outerarc ridge, a series of forearc basins and major N–S faults. The accretionary prism is an imbricate stack of fault slices and folds consisting of ophiolites and sediments scrapped off the subducting Indian Plate. The western, outer slope of the accretionary prism is very steep, rising to depths of 1500–2000 m within a distance of 30 km. There is a difference in the short wavelength morphology between the western and eastern portions of the accretionary prism. The outer portion consists of a series of faulted anticlines and synclines with amplitudes of a few 100 to ∼1000 m and widths of 5–15 km resulting from ongoing deformation of the sediments. The inner portion is smoother with lower slopes and forms a strong backstop. The width of the deforming portion of the accretionary prism narrows from 80 to 100 km in the south to about 40 km between 10°N and 11° 30′N. It remains at about 40 km to ∼14°40′N. North of there, the inner trench wall becomes a single steep slope up to the Myanmar shelf. The eastern edge of the outerarc ridge is fault bounded and, north of the Nicobar Islands, a forearc basin is located immediately to the east. A deep gravity low with very steep gradients lies directly over the forearc basin. The West Andaman Fault (WAF) and/or the Seulimeum strand of the Sumatra Fault System form the boundary between the Burma and Sunda plates south of the Andaman spreading centre. The WAF is the most prominent morphologic feature of the Andaman Sea and divides the sea into a shallow forearc and a deeper backarc region. The Diligent Fault runs through the forearc basin east of Little Andaman Island. Although it has the general appearance of a normal fault, multichannel seismic data show that it is a compressional feature that probably resulted from deformation of the hanging wall of the Eastern Margin Fault. This could occur if the forearc basins were formed by subduction erosion of the underlying crust rather than by east–west extension.
    Forearc
    Accretionary wedge
    Convergent boundary
    Anticline
    Décollement
    Prism
    The Central Eastern Desert (CED) is characterized by the widespread distribution of Neoproterozoic intra-oceanic island arc ophiolitic assemblages. The ophiolitic units have both back-arc and forearc geochemical signatures. The forearc ophiolitic units lie to the west of the back-arc related ones, indicating formation of an intra-oceanic island arc system above an east-dipping subducted slab (present coordinates). Following final accretion of the Neoproterozoic island arc into the western Saharan Metacraton, cordilleran margin magmatism started above a new W-dipping subduction zone due to a plate polarity reversal. We identify two belts in the CED representing ancient arc–forearc and arc–back-arc assemblages. The western arc–forearc belt is delineated by major serpentinite bodies running ∼NNW–SSE, marking a suture zone. Ophiolitic units in the back-arc belt to the east show an increase in the subduction geochemical signature from north to south, culminating in the occurrence of bimodal volcanic rocks farther south. This progression in subduction magmatism resulted from diachronous opening of a back-arc basin from north to south, with a bimodal volcanic arc evolving farther to the south. The intra-oceanic island arc units in the CED include coeval Algoma-type banded iron formations (BIFs) and volcanogenic massive sulphide (VMS) deposits. Formation of the BIFs was related to opening of an ocean basin to the north, whereas development of the VMS was related to rifting of the island arc in the south. Gold occurs as vein-type mineral deposits, concentrated along the NNW–SSE arc–forearc belt. The formation of these vein-type gold ore bodies was controlled by the circulation of hydrothermal fluids through serpentinites that resulted in Au mobilization, as constrained by the close spatial association of auriferous quartz veins with serpentinites along the western arc–forearc belt.
    Forearc
    Back-arc basin
    Island arc
    Volcanic arc
    Diachronous